Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Quantitative analysis of cell morphology based on the contourlet transform

Cellular morphology analysis has been widely used to detect abnormalities in biological processes. Clinicians have observed that lymphocytes become highly deformable under special conditions, particularly when graft rejection occurs. The characterisation of lymphocyte boundary deformation provides important quantitative parameters to assist clinical rejection diagnosis. To evaluate the dynamic features of the boundaries of target lymphocyte when a graft rejection occurs, a contourlet transform-based method is proposed to extract the characteristics of cell boundary variation. First, the lymphocyte is segmented and tracked to obtain their edge-to-centroid distance signals. Subsequently, a contourlet transform is performed on these signals, during which the edge-to-centroid distance signals of the lymphocyte is decomposed at multiple scales using the Laplacian pyramid; a multi-directional decomposition is then performed using a direction filter to merge the singularities distributed along the same direction and obtain the contourlet transform coefficients. Finally, statistical parameters of the cell dynamic boundaries are calculated, then fed into the support vector machine for classification of the cell deformation. Our findings demonstrate that contourlet transform has better performance in representing image features such as cell boundaries than wavelet transform for its prosperities of multi-scale and multi-directional decomposition for cell images.

References

    1. 1)
      • 1. Swedlow, J.R.: ‘Advanced hardware and software tools for fast multidimensional imaging of living cells’, Proc. Natl. Acad. Sci. USA, 2010, 107, (37), pp. 1600516006.
    2. 2)
      • 6. Ryan, G.L., Watanabe, N., Vavylonis, D.: ‘Image analysis tools to quantify cell shape and protein dynamics near the leading edge’, Cell Struct. Funct., 2013, 38, (1), pp. 17.
    3. 3)
      • 4. Vermolen, F.J., Gefen, A.: ‘A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts’, Biomech. Model. Mechanobiol., 2013, 12, (2), pp. 301323.
    4. 4)
      • 31. Starck, J.L., Candes, E.J., Donoho, D.L.: ‘The curvelet transform for image denoising’, IEEE Trans. Image Process., 2002, 11, (6), pp. 670684.
    5. 5)
      • 24. Darwish, S.M.: ‘Multi-level fuzzy contourlet-based image fusion for medical applications’, IET Image Process., 2013, 7, (7), pp. 694700.
    6. 6)
      • 11. Maskarinec, S.A., Franck, C., Tirrell, D.A., et al: ‘Quantifying cellular traction forces in three dimensions’, Proc. Natl. Acad. Sci. USA, 2009, 106, (52), pp. 2210822113.
    7. 7)
      • 7. Lin, W., Suo, Y., Deng, Y., et al: ‘Morphological change of CD4 + T cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse’, BMC Immunol., 2015, 16, (1), p. 49.
    8. 8)
      • 13. Nazlibilek, S., Karacor, D., Ercan, T., et al: ‘Automatic segmentation, counting, size determination and classification of white blood cells’, Measurement, 2014, 55, pp. 5865.
    9. 9)
      • 29. Huang, Y., Liu, Z.: ‘Segmentation and tracking of lymphocytes based on modified active contour models in phase contrast microscopy images’, Comput. Math. Methods Med., 2015, 2015, Article ID 693484.
    10. 10)
      • 21. Wang, X., Chen, W., Gao, J., et al: ‘Hybrid image denoising method based on non-subsampled contourlet transform and bandelet transform’, IET Image Process., 2017, 12, (5), pp. 778784.
    11. 11)
      • 14. Chen, S., Zhao, M., Wu, G., et al: ‘Recent advances in morphological cell image analysis’, Comput. Math. Methods Med., 2012, 2012, pp. 110.
    12. 12)
      • 9. Liao, T.T., Wang, L., Jia, R.W., et al: ‘Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to vero cell morphological change’, J. Env. Sci. Health B, 2014, 49, (10), pp. 760768.
    13. 13)
      • 22. Das, D.K., Koley, S., Bose, S., et al: ‘Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening’, Appl. Soft Comput., 2019, 83, p. 105642.
    14. 14)
      • 15. An, X., Liu, Z., Shi, Y., et al: ‘Modeling dynamic cellular morphology in images’, in Ayache, N., Delingette, H., Golland, P., et al. (Eds.): ‘Medical image computing and computer-assisted intervention – MICCAI 2012’ (Springer, Berlin, Heidelberg, 2012), pp. 340347.
    15. 15)
      • 20. Guo, Q., Dong, F., Sun, S., et al: ‘Image denoising algorithm based on contourlet transform for optical coherence tomography heart tube image’, IET Image Process., 2013, 7, (5), pp. 442450.
    16. 16)
      • 16. Huang, Y., Liu, Z., Shi, Y.: ‘Quantitative analysis of live lymphocytes morphology and intracellular motion in microscopic images’, Biomed. Signal Process. Control, 2015, 18, (2015), pp. 195203.
    17. 17)
      • 17. Daubechies, I.: ‘Ten lectures on wavelets’ (SIAM, Beijing, China, 1992).
    18. 18)
      • 30. Candès, E.J.: ‘Harmonic analysis of neural networks’, Appl. Comput. Harmon. Anal., 1999, 6, (2), pp. 197218.
    19. 19)
      • 19. Do, M.N., Vetterli, M.: ‘The contourlet transform: an efficient directional multiresolution image representation’, IEEE Trans. Image Process., 2005, 14, (12), pp. 20912106.
    20. 20)
      • 18. Candès, E.J., Donoho, D.L.: ‘Ridgelets: A key to higher-dimensional intermittency’, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci., 1999, 357, (1760), pp. 24952509.
    21. 21)
      • 27. Sathya, N., Karuppasamy, K., Suresh, P.: ‘Contourlet transform and morphological reconstruction based retinal blood vessel segmentation’, Int. J. Biomed. Eng. Technol., 2017, 25, (2–4), pp. 105119.
    22. 22)
      • 32. Zhang, G., Lin, Y.: ‘Lecture notes on functional analysis’ (Peking University Press, Philadelphia, Pennsylvania, USA., 1987, 1st edn.).
    23. 23)
      • 23. Asmare, M.H., Asirvadam, V.S., Hani, A.F.M.: ‘Image enhancement based on contourlet transform’, Signal Image Video Process., 2015, 9, (7), pp. 16791690.
    24. 24)
      • 8. Nassiri, I., McCall, M.N.: ‘Systematic exploration of cell morphological phenotypes associated with a transcriptomic query’, Nucleic Acids Res., 2018, 46, (19), pp. e116e116.
    25. 25)
      • 25. Lv, W., Wang, Y., Chen, X., et al: ‘Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion’, J. Biophotonics, 2019, 12, (1), p. e201800100.
    26. 26)
      • 5. Lin, J.-A., Wu, C.-H., Fang, S.-C., et al: ‘Combining the observation of cell morphology with the evaluation of key inflammatory mediators to assess the anti-inflammatory effects of geranyl flavonoid derivatives in breadfruit’, Food Chem., 2012, 132, (4), pp. 21182125.
    27. 27)
      • 28. Abkenar, M.R., Sadreazami, H., Ahmad, M.O.: ‘Salient region detection using feature extraction in the non-subsampled contourlet domain’, IET Image Process., 2018, 12, (12), pp. 22752282.
    28. 28)
      • 12. Paluch, E., Heisenberg, C.P.: ‘Biology and physics of cell shape changes in development’, Curr. Biol., 2009, 19, (17), pp. R790R799.
    29. 29)
      • 2. Biname, F., Pawlak, G., Roux, P., et al: ‘What makes cells move: requirements and obstacles for spontaneous cell motility’, Mol. BioSyst., 2010, 6, (4), pp. 648661.
    30. 30)
      • 10. Koslover, E.F., Chan, C.K., Theriot, J.A.: ‘Cytoplasmic flow and mixing due to deformation of motile cells’, Biophys. J., 2017, 113, (9), pp. 20772087.
    31. 31)
      • 26. Wang, H., Shi, J.: ‘SAR image segmentation algorithm based on contourlet domain AFMRF model’, IET Image Process., 2018, 12, (7), pp. 11241130.
    32. 32)
      • 3. Xiong, Y., Iglesias, P.A.: ‘Tools for analyzing cell shape changes during chemotaxis’, Integr. Biol., 2010, 2, (11–12), pp. 561567.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0909
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0909
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address