access icon free Higher order PDE based model for segmenting noisy image

In this study, a fourth-order non-linear partial differential equation (PDE) model together with multi-well potential has been proposed for greyscale image segmentation. The multi-well potential is constructed from the histogram of the given image to make the segmentation process fully automatic and unsupervised. Further, the model is refined for effective segmentation of noisy greyscale image. The fourth-order anisotropic term with the multi-well potential is shown to properly segment noisy images. Fourier spectral method in space with semi-implicit convexity splitting in time is used to derive an unconditionally stable scheme. Numerical studies on some standard test images and comparison of results with those in literature clearly depict the superiority of the anisotropic variant of the non-linear PDE model.

Inspec keywords: partial differential equations; image denoising; image segmentation; unsupervised learning; image colour analysis

Other keywords: fourth-order non-linear partial differential equation; Fourier spectral method; unsupervised segmentation; noisy greyscale image segmentation; nonlinear PDE model

Subjects: Mathematical analysis; Optical, image and video signal processing; Knowledge engineering techniques; Computer vision and image processing techniques; Mathematical analysis

References

    1. 1)
      • 1. Otsu, N.: ‘A threshold selection method from gray-level histograms’, Automatica, 1975, 11, pp. 2327.
    2. 2)
      • 14. Caselles, V., Catte, F., Coll, T., et al: ‘A geometric model for active contours’, Numer. Math., 1993, 66, pp. 131.
    3. 3)
      • 28. Thiruvenkadam, S.R., Arcot, S., Chen, Y.: ‘A PDE based method for fuzzy classification of medical images’. Int. Conf. on Image Processing, Atlanta, GA, USA., 2006, pp. 18051808.
    4. 4)
      • 37. Schindelin, J., Arganda-Carreras, I., Frise, E., et al: ‘Fiji: an open-source platform for biological-image analysis’, Nat. Meth., 2012, 9, (7), pp. 676682, PMID 22743772.
    5. 5)
      • 34. Li, F., Ng, M.K., Zeng, T.Y., et al: ‘A multiphase image segmentation method based on fuzzy region competition’, Siam J. Imaging Sci., 2010, 3, (3), pp. 277299.
    6. 6)
      • 12. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, pp. 321331.
    7. 7)
      • 27. Vijayakrishna, R.: ‘A unified model of Cahn-Hilliard grayscale inpainting and multiphase classification’. PhD thesis, Indian Institute of Technology Kanpur, India, 2015.
    8. 8)
      • 16. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277.
    9. 9)
      • 7. Manjunath, B., Chellappa, R.: ‘Unsupervised texture segmentation using Markov random fields models’, IEEE Trans. Pattern Anal. Mach. Intell., 1991, 13, pp. 478482.
    10. 10)
      • 26. Bertozzi, A.L., Esedoglu, S., Gillette, A.: ‘Inpainting of binary images using the cahn-hilliard equation’, IEEE Trans. Image Process., 2007, 16, pp. 285291.
    11. 11)
      • 29. Chen, F., Chen, Y., Tagare, H.D.: ‘An extension of sine-sinc model based on logarithm of likelihood’. Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition, Las Vegas, NV, USA., 2008, vol. 1, pp. 222227.
    12. 12)
      • 23. Li, Y., Kim, J.: ‘Multiphase image segmentation using a phase-field model’, Comput. Math. Appl., 2011, 62, pp. 737745.
    13. 13)
      • 6. Bouman, C.A., Shapiro, M.: ‘A multiscale random field model for Bayesian image segmentation’, IEEE Trans. Image Process., 1994, 3, pp. 162177.
    14. 14)
      • 18. Bertozzi, A.L., Flenner, A.: ‘Diffuse interface models on graphs for classification of high dimen- sional data’, Multiscale Model. Simul., 2012, 10, (3), pp. 10901118.
    15. 15)
      • 15. Osher, S., Sethian, J.A.: ‘Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations’, J. Comput. Phys., 1988, 79, (1), pp. 1249.
    16. 16)
      • 8. Geman, S., Geman, D.: ‘Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images’, IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6, pp. 721741.
    17. 17)
      • 31. Chen, F., Chen, Y., Hemant, D.T.: ‘A new framework of multiphase segmentation and its application to partial volume segmentation’, Appl. Comput. Intell. Soft Comput., 2011, 2011, Article ID: 786369, pp. 111.
    18. 18)
      • 2. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: ‘A new method for gray-level picture thresholding using the entropy of the histogram’, Comput. Vis. Graph. Image Process., 1985, 29, pp. 273285.
    19. 19)
      • 35. Kang, S.H., Jung, Y.M., Shen, J.: ‘Multiphase image segmentation via modica-mortola phase transition’ Cam report, UCLA, 2006.
    20. 20)
      • 20. Merkurjev, E., Cardona, C.G., Bertozzi, A.L., et al: ‘Diffuse interface methods for multiclass segmentation of high-dimensional data’, Appl. Math. Lett., 2014, 33, pp. 2934.
    21. 21)
      • 17. Chan, T.F., Vese, L.A.: ‘A multiphase level set framework for image segmentation using the Mumford and Shah model’, Int. J. Comp. Vision, 2002, 50, (3), pp. 271293.
    22. 22)
      • 13. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vision, 1997, 22, pp. 6179.
    23. 23)
      • 25. Jung, Y.M., Kang, S.H., Shen, J.: ‘Multiphase image segmentation via modica-mortola phase transition’, SIAM J. Appl. Math., 2007, 67, pp. 12131232.
    24. 24)
      • 22. Beneš, M., Chalupecký, V., Mikula, K.: ‘Geometrical image segmentation by the Allen–Cahn equation’, Appl. Numer. Math., 2004, 51, pp. 187205.
    25. 25)
      • 19. Merkurjev, E., Kostic, T., Bertozzi, A.L.: ‘An MBO scheme on graphs for segmentation and image processing’, SIAM J. Imaging Sci., 2013, 6, (4), pp. 19031930.
    26. 26)
      • 5. Berthod, M., Kato, Z., Yu, S., et al: ‘Bayesian image classification using Markov random fields’, Image Vis. Comput., 1996, 14, (4), pp. 285293.
    27. 27)
      • 4. Pal, N.R., Pal, S.K.: ‘A review on image segmentation techniques’, Pattern Recognit., 1993, 26, pp. 12771294.
    28. 28)
      • 3. Glasbey, C.A.: ‘An analysis of histogram-based thresholding algorithms’, CVGIP, Graph. Models Image Process., 1993, 55, pp. 532537.
    29. 29)
      • 9. Tu, Z.W., Zhu, S.C.: ‘Image segmentation by data-driven Markov Chain Monte Carlo’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (5), pp. 657673.
    30. 30)
      • 10. Shi, J., Malik, J.: ‘Normalized cuts and image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 888905.
    31. 31)
      • 11. Mumford, D., Shah, J.: ‘Optimal approximation by piecewise smooth functions and associ- ated variational problems’, Commun. Pure Appl. Math., 1989, 42, pp. 577685.
    32. 32)
      • 32. Schönlieb, C.B., Bertozzi, A.L.: ‘Unconditionally stable schemes for higher order inpainting’, Commun. Math. Sci., 2011, 9, pp. 413457.
    33. 33)
    34. 34)
      • 24. Samson, C., Feraud, L.B., Aubert, G., et al: ‘A variational model for image classification and restoration’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, pp. 460472.
    35. 35)
      • 21. Cardona, C.G., Flenner, A., Percus, A.G.: ‘Multiclass semi-supervised learning on graphs using Ginzburg-Landau functional minimization’, Adv. Intell. Syst. Comput., 2015, 318, pp. 119135.
    36. 36)
      • 33. Cai, X., Chan, R., Zeng, T.: ‘A two-stage image segmentation method using a convex variant of the mumford–shah model and thresholding’, SIAM J. Imaging Sci., 2013, 6, (1), pp. 368390.
    37. 37)
      • 36. Poynton, C.A.: ‘Poynton's colour faq’, 1995. Web Page http://www.poynton.com/colorfaq.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0885
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0885
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading