Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automatic segmentation for pulmonary nodules in CT images based on multifractal analysis

To characterise pulmonary nodules, the volume analysis of solitary pulmonary nodules (SPNs) is important for diagnosis. To accurately estimate the volume of pulmonary nodules and reduce physician workloads, this study presents an intelligent method to automatically detect and segment pulmonary nodules from computed tomography (CT) scans. To detect nodule candidates, a modified ‘Iso’ capacity measure based on multifractals analysis is proposed to reflect the local singularity properties and capture the textures of pulmonary nodules. Subsequently, the proposed two-stage false nodules pruning procedure is applied to categorise a true SPN from nodule candidates. Preliminary results demonstrate that the proposed method can automatically and successfully detect and segment 118 SPNs in 118 CT images from a public lung database. The average and standard deviation of segmentation overlap measures are 0.71 and 0.08, respectively. The authors’ method is competitive compared to the methods reported in the literature. Besides, the proposed method can avoid the problem of selecting seeds when applying region-growing techniques to segment pulmonary nodules.

References

    1. 1)
      • 16. Huang, P.W., Lee, C.H.: ‘Automatic classification for pathological prostate images based on fractal analysis’, IEEE Trans. Med. Imaging, 2009, 28, (7), pp. 10371050.
    2. 2)
      • 26. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    3. 3)
      • 17. Lin, P.L., Huang, P.W., Lee, C.H., et al: ‘Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model’, Pattern Recognit., 2013, 46, (12), pp. 32793287.
    4. 4)
      • 3. Ko, J.P., Naidich, D.P.: ‘Computer-aided diagnosis and the evaluation of lung disease’, J. Thorac. Imaging, 2004, 19, (3), pp. 136155.
    5. 5)
      • 7. Dehmeshki, J., Amin, H., Valdivieso, M., et al: ‘Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach’, IEEE Trans. Med. Imaging, 2008, 27, (4), pp. 467480.
    6. 6)
      • 30. Reeves, A.P., Biancardi, A.M., Yankelevitz, D., et al: ‘A public image database to support research in computer aided diagnosis’. Proc. of 31th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Minnesota, USA, September 2009, pp. 37153718.
    7. 7)
      • 4. Bae, K.T., Kim, J.S., Na, Y.H., et al: ‘Pulmonary nodules: automated detection on CT images with morphologic matching algorithm-preliminary results’, Radiology, 2005, 236, (1), pp. 286294.
    8. 8)
      • 28. Mendenhall, W., Beaver, R.J., Beaver, B.M.: ‘Introduction to probability and statistics’ (Duxbury Press, USA, 2012, 14th edn.), pp. 6566.
    9. 9)
      • 29. Toriwaki, J., Yoshida, H.: ‘Fundamentals of three-dimensional digital image processing’ (Springer, New York, 2009).
    10. 10)
      • 15. Mandelbrot, B.B.: ‘Fractal geometry of nature’ (Freeman, San Francisco, CA, 1982).
    11. 11)
      • 5. Xu, N., Ahuja, N., Bansal, R.: ‘Automated lung nodule segmentation using dynamic programming and EM based classification’, Proc. SPIE Med. Imaging, 2002, 4684, pp. 666676.
    12. 12)
      • 10. Kubota, T., Jerebko, A.K., Dewan, M., et al: ‘Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models’, Med. Image Anal., 2011, 15, (1), pp. 133154.
    13. 13)
      • 20. Levy-Vehel, J., Mignot, P.: ‘Multifractal segmentation of images’, Fractals, 1994, 2, (3), pp. 371378.
    14. 14)
      • 1. Winer-Muram, H.T.: ‘The solitary pulmonary nodule’, Radiology, 2006, 239, (1), pp. 3449.
    15. 15)
      • 27. Ridler, T.W., Calvard, S.: ‘Picture thresholding using an iterative selection method’, IEEE Trans. Syst. Man Cybern., 1978, 8, (8), pp. 630632.
    16. 16)
      • 19. Levy-Vehel, J., Berroir, J.P.: ‘Image analysis through multifractal description’. Technical Report 1942, INRIA, France, 1993, pp. 261274.
    17. 17)
      • 6. Kostis, W.J., Reeves, A.P., Yankelevitz, D.F., et al: ‘Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images’, IEEE Trans. Med. Imaging, 2003, 22, (10), pp. 12591274.
    18. 18)
      • 25. Hu, S., Hoffman, E.A., Reinhardt, J.M.: ‘Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images’, IEEE Trans. Med. Imaging, 2001, 20, (6), pp. 490498.
    19. 19)
      • 32. Wang, J., Engelmann, R., Li, Q.: ‘Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique’, Med. Phys., 2007, 34, (12), pp. 46784689.
    20. 20)
      • 24. Ko, J.P., Betke, M.: ‘Chest CT: automated nodule detection and assessment of change over time-preliminary experience’, Radiology, 2001, 218, (1), pp. 267273.
    21. 21)
      • 9. Kuhnigk, J., Dicken, V., Bornemann, L., et al: ‘Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans’, IEEE Trans. Med. Imaging, 2006, 25, (4), pp. 417434.
    22. 22)
      • 21. Stojić, T., Reljin, I., Reljin, B.: ‘Adaptation of multifractal analysis to segmentation of microcalcifications in digital mammograms’, Phys. A,Stat. Mech. Appl., 2006, 367, pp. 494508.
    23. 23)
      • 8. Ginneken, B.V.: ‘Supervised probabilistic segmentation of pulmonary nodules in CT scans’. Proc. of Medical Image Computing and Computer-Assisted Intervention, Copenhagen, Denmark, 2006, pp. 912919.
    24. 24)
      • 14. Deboeverie, F., Veelaert, P., Philips, W.: ‘Image segmentation with adaptive region growing based on a polynomial surface model’, J. Electron. Imaging, 2013, 22, (4), p. 043004.
    25. 25)
      • 13. Wang, S., Zhou, M., Liu, Z., et al: ‘Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation’, Med. Image Anal., 2017, 40, pp. 172183.
    26. 26)
      • 31. Ji, Z.X., Sun, Q.S., Xia, D.S.: ‘A framework with modified fast FCM for brain MR images segmentation’, Pattern Recognit., 2011, 44, (5), pp. 9991013.
    27. 27)
      • 23. Lin, P.L., Huang, P.Y., Huang, P.W., et al: ‘Teeth segmentation of dental periapical radiographs based on local singularity analysis’, Comput. Methods Programs Biomed., 2014, 113, pp. 443445.
    28. 28)
      • 12. Wang, S., Zhou, M., Gevaert, O., et al: ‘A multi-view deep convolutional neural networks for lung nodule segmentation’. 2017 39th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 2017, pp. 17521755.
    29. 29)
      • 11. Wu, J., Qian, T.: ‘A survey of pulmonary nodule detection, segmentation and classification in computed tomography with deep learning techniques’, J. Med. Artif. Intell., 2019, 2, pp. 28.
    30. 30)
      • 18. Lopes, R., Betrouni, N.: ‘Fractal and multifractal analysis: a review’, Med. Image Anal., 2009, 13, (4), pp. 634649.
    31. 31)
      • 2. McNitt-Gray, M.F., Wyckoff, N., Sayre, J.W., et al: ‘The effects of co-occurrence matrix based texture parameters on the classification of solitary pulmonary nodules imaged on computed tomography’, Comput. Med. Imaging Graph., 1999, 23, (6), pp. 339348.
    32. 32)
      • 22. Bartnykas, K.: ‘Segmentation of liver region based on multifractal analysis’, Electron. Electr. Eng., 2010, 2, (98), pp. 7982.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0884
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0884
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address