Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Detection, quantification and classification of ripened tomatoes: a comparative analysis of image processing and machine learning

In this study, specifically for the detection of ripe/unripe tomatoes with/without defects in the crop field, two distinct methods are described and compared from captured images by a camera mounted on a mobile robot. One is a machine learning approach, known as ‘Cascaded Object Detector’ (COD) and the other is a composition of traditional customised methods, individually known as ‘Colour Transformation’: ‘Colour Segmentation’ and ‘Circular Hough Transformation’. The (Viola-Jones) COD generates ‘histogram of oriented gradient’ (HOG) features to detect tomatoes. For ripeness checking, the RGB mean is calculated with a set of rules. However, for traditional methods, colour thresholding is applied to detect tomatoes either from natural or solid background and RGB colour is adjusted to identify ripened tomatoes. This algorithm is shown to be optimally feasible for any micro-controller based miniature electronic devices in terms of its run time complexity of O(n 3) for a traditional method in best and average cases. Comparisons show that the accuracy of the machine learning method is 95%, better than that of the Colour Segmentation Method using MATLAB.

References

    1. 1)
    2. 2)
      • 10. Shujuan, S., Zhize, X., Xingang, W., Guan, H., Wenqi, W., De, X.: ‘Real-time vehicle detection using Haar-SURF mixed features and gentle AdaBoost classifier’. 27th Chinese Control and Decision Conf. (CCDC), Qingdao, People's Republic of China, 2015.
    3. 3)
      • 5. Ni, J., Khan, Z., Wang, S., Wang, K., Haider, S.K.: ‘Automatic detection and counting of circular shaped overlapped objects using circular Hough transform and contour detection’. 12th World Congress on Intelligent Control and Automation, Guilin, People's Republic of China, 2016.
    4. 4)
    5. 5)
      • 15. Viola, P., Jones, M.: ‘Rapid object detection using a boosted cascade of simple features’. Computer Vision and Pattern Recognition, Kauai, HI, USA., 2011.
    6. 6)
      • 3. D'Orazio, T., Guaragnella, C., Leo, M., Distante, A.: ‘A new algorithm for ball recognition using circle Hough transform and neural classifier’, Pattern Recogn., 2004, 37, (3), pp. 393408.
    7. 7)
      • 9. Chen, Z., Ellis, T., Velastin, S.A.: ‘Vehicle detection, tracking and classification in urban traffic’. 15th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC), Anchorage, AK, USA., 2012.
    8. 8)
      • 4. Mukhopadhyay, P., Chaudhuri, B.B.: ‘A survey of Hough transform’, Pattern Recogn., 2015, 48, (3), pp. 9931010.
    9. 9)
      • 11. Zhuang, X., Kang, W., Wu, Q.: ‘Real-time vehicle detection with foreground-based cascade classifier’, IET Image Process., 2016, 10, (4), pp. 289296.
    10. 10)
    11. 11)
      • 12. David, H., Athira, T.A.: ‘Improving the performance of vehicle detection and verification by log Gabor filter optimization’. Fourth Int. Conf. on Advances in Computing and Communications (ICACC), Cochin, India, 2014.
    12. 12)
      • 18. Jiménez, A.R., Ceres, R., Pons, J.L.: ‘A survey of computer vision methods for locating fruit on trees’, Trans. ASAE, 2000, 43, (6), pp. 911920. Available at https://doi.org/10.13031/2013.3096.
    13. 13)
      • 2. Atherton, T., Kerbyson, D.: ‘Size invariant circle detection’, Image Vision Comput., 1999, 17, (11), pp. 795803.
    14. 14)
    15. 15)
      • 16. Satzoda, R.K., Trivedi, M.M.: ‘Multi-part vehicle detection using symmetry derived analysis and active learning’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (4), pp. 926937.
    16. 16)
    17. 17)
      • 8. Broggi, A., Cardarelli, E., Cattani, S., Medici, P., Sabbatelli, M.: ‘Vehicle detection for autonomous parking using a Soft-Cascade AdaBoost classifier’. IEEE Intelligent Vehicles Symp. Proc., Dearborn, MI, USA., 2014.
    18. 18)
      • 13. Davies, E.: ‘Machine vision: theory, algorithms, practicalitiesChapter 10, (Morgan Kauffman Publishers, 2005, 3rd edn.), pp. 283313.
    19. 19)
    20. 20)
      • 20. Hua, Z.B., Qian, H.W., Bo, L.J., Jiang, C.Z., Xiang, S.F., Tao, J.W., Liang, C.L.: ‘Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review’, https://doi.org/10.1016/j.foodres.2014.03.0, Food Res. Int., 2014, 62, pp. 326343.
    21. 21)
      • 19. Zhang, Y., Wang, S., Ji, G., Phillips, P.: ‘Fruit classification using computer vision and feedforward neural network’, J. Food Eng., 2014, 143, pp. 167177. Available at https://doi.org/10.1016/j.jfoodeng.2014.07.001.
    22. 22)
      • 21. Rizon, M., Yazid, H., Saad, P.: ‘A comparison of circular object detection using Hough transform and chord intersection’. Geometric Modelling and Imaging, GMAI 2007, Zurich, Switzerland, 2007, pp. 115120.
    23. 23)
      • 7. Liebig, T.: ‘Privacy preserving centralized counting of moving objects’. Geo Information and Cartography, Lisbon, Portugal, 2015 (LNCS, 217), pp. 91103.
    24. 24)
      • 6. Yuen, H., Princen, J., Illingworth, J., Kittler, J.: ‘Comparative study of Hough transform methods for circle finding’, Image Vision Comput., 1990, 8, (1), pp. 7177.
    25. 25)
      • 1. Barbedo, J.G.A.: ‘A review on methods for automatic counting of objects in digital images’, IEEE Latin Am. Trans., 2012, 10, (5), pp. 21122124.
    26. 26)
      • 14. Crow, F.: ‘Summed-area tables for texture mapping’, Proc. of SIGGRAPH, 1984, 18, (3), pp. 207212.
    27. 27)
      • 17. Wang, X., Xu, L., Sun, H., Xin, J., Zheng, N.: ‘On-road vehicle detection and tracking using MMW radar and monovision fusion’, IEEE Transactions on Intelligent Transportation Systems, 2016, 17, (7), pp. 20752084.
    28. 28)
      • 26. Ali, N.M., Karis, M.S., Maisarah, N., Sobran, M., Bahar, M.B., Ken, O.K., Ibrahim, M.M.: ‘Detection of multiple mangoes using histogram of oriented gradient technique in aerial monitoring’, ARPN J. Eng. Appl. Sci., 2017, 12, (8), pp. 27302736.
    29. 29)
      • 29. Nguyen, H.-H., Tran-Huu, P.-T., Tran, H.M., Ha, S.V.-U.: ‘Improved optical flow estimation in traffic monitoring system’. Information and Communication Technologies (WICT), Hanoi, Vietnam, December 2013, pp. 165169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0738
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0738
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address