access icon free Robust defect detection in 2D images printed on 3D micro-textured surfaces by multiple paired pixel consistency in orientation codes

Defect detection is now an active research area for production quality assurance. Traditional visual inspection systems are developed by human beings, which is a time-consuming, labour-intensive, and highly error-prone process, and are therefore unreliable. To overcome these problems, the authors proposed a new method for detecting defects when printing on a 3D micro-textured surface. They utilise an orientation code as the basis to resist the fluctuations in illumination. Based on the consistency of the pixel pairs, they developed a model called multiple paired pixel consistency to represent the statistical relationship between each pixel pair in defect-free images. Finally, based on this model, they designed a defect detection method. Even with different defect sizes, illumination conditions, noise intensities, and other characteristics, the performance of the proposed algorithm is extremely stable and highly accurate, and the recall, precision, and F-measure in most of the results can reach 0.85,0.93, and 0.9, respectively. In addition, the defect detection rate can reach almost 100%. This demonstrates that the authors' approach can achieve state-of-the-art accuracy in real industrial applications.

Inspec keywords: feature extraction; statistical analysis; automatic optical inspection; image texture; production engineering computing; quality assurance; quality control; computer vision

Other keywords: orientation code; error-prone process; production quality assurance; robust defect detection; defect-free images; multiple paired pixel consistency; 3D microtextured surface; pixel pair; labour-intensive; defect sizes; defect detection rate

Subjects: Statistics; Inspection and quality control; Optical, image and video signal processing; Other topics in statistics; Other topics in statistics; Production engineering computing; Computer vision and image processing techniques; Industrial applications of IT

References

    1. 1)
      • 16. Bodnarova, A., Bennamoun, M., Kubik, K.: ‘Defect detection in textile materials based on aspects of the hvs’. SMC'98 Conf. Proc. 1998 IEEE Int. Conf. on Systems Man and Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 1998, vol. 5, pp. 44234428.
    2. 2)
      • 8. Yu, L., Qi, D.: ‘Applying multifractal spectrum combined with fractal discrete brownian motion model to wood defects recognition’, Wood Sci. Technol., 2011, 45, (3), pp. 511519.
    3. 3)
      • 11. Zhu, D., Pan, R., Gao, W., et al: ‘Yarn-dyed fabric defect detection based on autocorrelation function and glcm’, Autex Res. J., 2015, 15, (3), pp. 226232.
    4. 4)
      • 24. Krummenacher, G., Ong, C.S., Koller, S., et al: ‘Wheel defect detection with machine learning’, IEEE Trans. Intell. Transp. Syst., 2017, 19, (4), pp. 11761187.
    5. 5)
      • 10. Latif-Amet, A., Ertüzün, A., Erçil, A.: ‘An efficient method for texture defect detection: sub-band domain co-occurrence matrices’, Image Vis. Comput., 2000, 18, (6-7), pp. 543553.
    6. 6)
      • 13. Vilnrotter, F.M., Nevatia, R., Price, K.E.: ‘Structural analysis of natural textures’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, 8, (1), pp. 7689.
    7. 7)
      • 38. Ke, Z.N., Zhao, Q.J., Huang, C.H., et al: ‘Detection of wood surface defects based on particle swarm-genetic hybrid algorithm’. Audio Language and Image Processing (ICALIP) 2016 Int. Conf. on, Shanghai, People's Republic of China, 2016, pp. 375379.
    8. 8)
      • 34. Zhou, S., Chen, Y., Zhang, D., et al: ‘Classification of surface defects on steel sheet using convolutional neural networks’, Mater. Technol., 2017, 51, (1), pp. 123131.
    9. 9)
      • 17. Sakhare, K., Kulkarni, A., Kumbhakarn, M., et al: ‘Spectral and spatial domain approach for fabric defect detection and classification’. Int. Conf. on Industrial Instrumentation and Control (ICIC) 2015, Pune, India, 2015, pp. 640644.
    10. 10)
      • 31. Bouaynaya, N., Schonfeld, D.: ‘Spatially variant morphological image processing: theory and applications’. Visual Communications and Image Processing 2006, San Jose, CA, USA, 2006, vol. 6077, p. 60771Y.
    11. 11)
      • 6. Fathi, A., Monadjemi, A.H., Mahmoudi, F.: ‘Defect detection of tiles with combined undecimated wavelet transform and glcm features’, Int. J. Soft. Comput. Eng., 2012, 2, (2), pp. 22312307.
    12. 12)
      • 18. Jing, J., Chen, S., Li, P.: ‘Automatic defect detection of patterned fabric via combining the optimal gabor filter and golden image subtraction’, J. Fiber Bioeng. Inf., 2015, 8, (2), pp. 229239.
    13. 13)
      • 27. Liang, D., Hashimoto, M., Iwata, K., et al: ‘Co-occurrence probability-based pixel pairs background model for robust object detection in dynamic scenes’, Pattern Recognit., 2015, 48, (4), pp. 13741390.
    14. 14)
      • 12. Fekri-Ershad, S., Tajeripour, F.: ‘Multi-resolution and noise-resistant surface defect detection approach using new version of local binary patterns’, Appl. Artif. Intell., 2017, 31, (5-6), pp. 395410.
    15. 15)
      • 33. Ngan, H.Y., Pang, G.K., Yung, N.H.: ‘Automated fabric defect detection- a review’, Image Vis. Comput., 2011, 29, (7), pp. 442458.
    16. 16)
      • 4. Narendra, V., Hareesha, K.: ‘Study and comparison of various image edge detection tehniques used in quality inspection and evaluation of agricultural and food products by computer vision’, Int. J. Agric. Biol. Eng., 2011, 4, (2), pp. 8390.
    17. 17)
      • 14. Chen, J., Jain, A.K.: ‘A structural approach to identify defects in textured images’. Systems Man and Cybernetics 1988 Proc. of the 1988 IEEE Int. Conf. on, Beijing, People's Republic of China, 1988, vol. 1, pp. 2932.
    18. 18)
      • 22. Tao, X., Zhang, D., Ma, W., et al: ‘Automatic metallic surface defect detection and recognition with convolutional neural networks’, Appl. Sci., 2018, 8, (9), p. 1575.
    19. 19)
      • 37. Zhang, Y., Xu, C., Li, C., et al: ‘Wood defect detection method with pca feature fusion and compressed sensing’, J. Forestry Res., 2015, 26, (3), pp. 745751.
    20. 20)
      • 9. Wakaf, Z., Jalab, H.A.: ‘Defect detection based on extreme edge of defective region histogram’, J. King Saud University-Comput. Inf. Sci., 2018, 30, (1), pp. 3340.
    21. 21)
      • 26. Ullah, F., Kaneko, S.: ‘Using orientation codes for rotation-invariant template matching’, Pattern Recognit., 2004, 37, (2), pp. 201209.
    22. 22)
      • 28. Xiang, S., Yan, Y., Asano, H., et al: ‘Robust printing defect detection on 3d textured surfaces by multiple paired pixel consistency of orientation codes’. 2018 12th France-Japan and 10th Europe-Asia Congress on Mechatronics, Mie, Japan, 2018, pp. 373378.
    23. 23)
      • 19. Wen, Z., Cao, J., Liu, X., et al: ‘Fabric defects detection using adaptive wavelets’, Int. J. Cloth. Sci. Technol., 2014, 26, (3), pp. 202211.
    24. 24)
      • 7. Karlekar, V.V., Biradar, M., Bhangale, K.: ‘Fabric defect detection using wavelet filter’. Computing Communication Control and Automation (ICCUBEA) 2015 Int. Conf. on, Maharashtra, India, 2015, pp. 712715.
    25. 25)
      • 3. Hoseini, E., Farhadi, F., Tajeripour, F.: ‘Fabric defect detection using auto-correlation function’, Int. J. Comput. Theory Eng., 2013, 5, (1), p. 114.
    26. 26)
      • 30. He, L., Chao, Y., Suzuki, K., et al: ‘Fast connected-component labeling’, Pattern Recognit., 2009, 42, (9), pp. 19771987.
    27. 27)
      • 32. Xiang, , 2019, Available at https://hce-lab.net/cloud/index.php/s/3FFFFmU8JIL1RTO.
    28. 28)
      • 39. Aiger, D., Talbot, H.: ‘The phase only transform for unsupervised surface defect detection’. 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 295302.
    29. 29)
      • 23. Li, Y., Zhang, D., Lee, D.J.: ‘Automatic fabric defect detection with a wide-and-compact network’, Neurocomputing, 2019, 329, pp. 329338.
    30. 30)
      • 2. Xie, X.: ‘A review of recent advances in surface defect detection using texture analysis techniques’, ELCVIA Electron. Lett. Comput. Vis. Image Anal., 2008, 7, (3), pp. 114117.
    31. 31)
      • 15. Bennamoun, M., Bodnarova, A.: ‘Automatic visual inspection and flaw detection in textile materials: past, present and future’. SMC'98 Conf. Proc. 1998 IEEE Int. Conf. on Systems Man and Cybernetics (Cat. No. 98CH36218), San Diego, CA, USA, 1998, vol. 5, pp. 43404343.
    32. 32)
      • 29. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’, 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 886893.
    33. 33)
      • 1. Mehle, A., Bukovec, M., Likar, B., et al: ‘Print registration for automated visual inspection of transparent pharmaceutical capsules’, Mach. Vis. Appl., 2016, 27, (7), pp. 10871102.
    34. 34)
      • 25. Yan, Y., Kaneko, S., Asano, H.: ‘Accumulated and aggregated shifting of intensity for defect detection on micro 3d textured surfaces’, Pattern Recognit., 2020, 98, p. 107057.
    35. 35)
      • 5. Taştimur, C., Karaköse, M., Akın, E., et al: ‘Rail defect detection with real time image processing technique’. Industrial Informatics (INDIN) 2016 IEEE 14th Int. Conf. on, Poitiers, France2016, pp. 411415.
    36. 36)
      • 35. Li, P., Liang, J., Shen, X., et al: ‘Textile fabric defect detection based on low-rank representation’, Multimedia Tools Appl., 2017, 78, (1), pp. 126.
    37. 37)
      • 36. Lizarraga-Morales, R.A., Correa-Tome, F.E., Sanchez-Yanez, R.E., et al: ‘On the use of binary features in a rule-based approach for defect detection on patterned textiles’, IEEE Access, 2019, 7, pp. 1804218049.
    38. 38)
      • 20. Xiaobo, Y.: ‘Fabric defect detection of statistic aberration feature based on gmrf model [j]’, J. Text. Res., 2013, 4, p. 026.
    39. 39)
      • 21. Li, M., Cui, S., Xie, Z., et al: ‘Application of gaussian mixture model on defect detection of print fabric [j]’, J. Text. Res., 2015, 8, p. 019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0724
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0724
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading