access icon free Multi-exposure image fusion technique using multi-resolution blending

This study proposes a multi-exposure image fusion (MEF) technique that takes multi-exposure input images and produces a high-quality output image without any artefacts. The proposed technique consists of four steps. In the first step, three quality measures (contrast, saturation, and well exposedness) are measured. Secondly, the colour dissimilarity approach is used to detect moving objects. Thirdly, the authors calculate the weight maps using three quality measures (contrast, saturation, and well exposedness) and colour dissimilarity feature. Finally, the fused image is generated using the multi-resolution blending utilising pyramid decomposition. The vital advantage of the proposed technique is that it blends the multi-exposure images very well and avoids the seams effectively. The method can be used for consumer cameras as the presented technique is quite fast. Experimental results prove that the proposed method produces high dynamic range images without ghost artefacts. Furthermore, the comparison, objectively and subjectively, of the proposed technique in terms of mutual information, MEF structural similarity index, and natural image quality evaluator, with state-of-the-art techniques, shows significant improvement of the proposed scheme over existing techniques.

Inspec keywords: image fusion; image resolution; image colour analysis; object detection; cameras

Other keywords: consumer cameras; high dynamic range images; multiexposure image fusion technique; natural image quality evaluator; multiresolution blending; MEF structural similarity index; moving object detection; multiexposure input images; high-quality output image; pyramid decomposition; weight maps; quality measures; colour dissimilarity approach

Subjects: Computer vision and image processing techniques; Sensor fusion; Optical, image and video signal processing; Image sensors

References

    1. 1)
      • 26. Qu, G.H., Zhang, D.L., Yan, P.F.: ‘Information measure for performance of image fusion’, Electron. Lett., 2002, 38, (7), pp. 313315.
    2. 2)
      • 3. Artusi, A., Richter, T., Ebrahimi, T., et al: ‘High dynamic range imaging technology [lecture notes]’, IEEE Signal Process. Mag., 2017, 34, (5), pp. 165172.
    3. 3)
      • 12. Ma, K., Li, H., Yong, H., et al: ‘Robust multi-exposure image fusion: a structural patch decomposition approach’, IEEE Trans. Image Process., 2017, 26, (5), pp. 25192532.
    4. 4)
      • 21. Burt, P., Adelson, T.: ‘The Laplacian pyramid as a compact image code’, IEEE Trans. Commun., 1983, 31, pp. 532540.
    5. 5)
      • 20. Gonzalea, R.C., Woods, R.E.: ‘Wavelets and multiresolution processing digital image processing’ (Prentice-Hall, Upper Saddle River, 2004).
    6. 6)
      • 7. Li, S., Kang, X.: ‘Fast multi-exposure image fusion with median filter and recursive filter’, IEEE Trans. Consum. Electron., 2012, 58, (2), pp. 626632.
    7. 7)
      • 9. Shen, J., Zhao, Y., Yan, S., et al: ‘Exposure fusion using boosting Laplacian pyramid’, IEEE Trans. Cybern., 2014, 44, (9), pp. 15791590.
    8. 8)
      • 11. Liu, Y., Wang, Z.: ‘Dense SIFT for ghost-free multi-exposure fusion’, J. Vis. Commun. Image Represent., 2015, 31, pp. 208224.
    9. 9)
      • 16. Přibyl, B., Chalmers, A., Zemčík, P., et al: ‘Evaluation of feature point detection in high dynamic range imagery’, J. Vis. Commun. Image Represent., 2016, 38, pp. 141160.
    10. 10)
      • 25. Ma, K., Zeng, K., Wang, Z.: ‘Perceptual quality assessment for multiexposure image fusion’, IEEE Trans. Image Process., 2015, 24, (11), pp. 33453356.
    11. 11)
      • 22. Welcome to Kede Ma's webpage’, Available at https://ece.uwaterloo.ca/k29ma/, accessed 07 August 2018.
    12. 12)
      • 18. Eilertsen, G., Mantiuk, R.K., Unger, J.: ‘A comparative review of tone-mapping algorithms for high dynamic range video’, Comput. Graph. Forum, 2017, 36, (2), pp. 565592.
    13. 13)
      • 4. Mertens, T., Kautz, J., Van Reeth, F.: ‘Exposure fusion’. IEEE Conf. on 15th Pacific Computer Graphics and Applications, Washington, DC, USA, 2007, pp. 382390.
    14. 14)
      • 8. Zhang, W., Cham, W.-K.: ‘Gradient-directed multiexposure composition’, IEEE Trans. Image Process., 2012, 21, (4), pp. 23182323.
    15. 15)
      • 24. Codes’, Available at http://www.escience.cn/people/liuyu1/Codes.html, accessed 15 August 2018.
    16. 16)
      • 5. An, J.H., Lee, S.H., Kuk, J.G., et al: ‘A multi-exposure image fusion algorithm without ghost effect’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011, pp. 15651568.
    17. 17)
      • 2. Youm, S.-J, Cho, W.-H, Hong, K.-S: ‘High dynamic range video through fusion of exposured-controlled frames’. Machine Vision Application, Tsukuba, Japan, January 2005, pp. 546549.
    18. 18)
      • 14. Fujifilm announce SuperCCD SR’, Available at https://www.dpreview.com/articles/6851251325/fujisuperccdsr, accessed 10 October 2018.
    19. 19)
      • 6. Song, M., Tao, D., Chen, C., et al: ‘Probabilistic exposure fusion’, IEEE Trans. Image Process., 2012, 21, (1), pp. 341357.
    20. 20)
      • 15. Huo, Y., Zhang, X.: ‘Single image-based HDR image generation with camera response function estimation’, IET Image Process., 2017, 11, (12), pp. 13171324.
    21. 21)
      • 10. Vanmali, A.V., Kelkar, S.G., Gadre, V.M.: ‘Multi-exposure image fusion for dynamic scenes without ghost effect’. Proc. 21st Nat. Conf. Commun. (NCC), Mumbai, India, March 2015, pp. 16.
    22. 22)
      • 1. Reinhard, E., Heidrich, W., Debevec, P., et al: ‘High dynamic range imaging’ (Elsevier Science, Saint Louis, 2014).
    23. 23)
      • 13. Que, Y., Yang, Y., Lee, H. J.: ‘Exposure measurement and fusion via adaptive multiscale edge-preserving smoothing’, IEEE Trans. Instrum. Meas., 2019, pp. 112.
    24. 24)
      • 23. Xudong Kang's homepage’, Available at http://xudongkang.weebly.com., accessed 15 August 2018.
    25. 25)
      • 27. Mittal, A., Soundararajan, R., Bovik, A.C.: ‘Making a ‘completely blind’ image quality analyzer’, IEEE Signal Process. Lett., 2013, 20, (3), pp. 209212.
    26. 26)
      • 19. Lee, D.-H., Fan, M., Kim, S.-W., et al: ‘High dynamic range image tone mapping based on asymmetric model of retinal adaptation’, Signal Process., Image Commun., 2018, 68, pp. 120128.
    27. 27)
      • 17. Khan, I.R., Rahardja, S., Khan, M., et al: ‘A tone-mapping technique based on histogram using a sensitivity model of the human visual system’, IEEE Trans. Ind. Electron., 2018, 65, (4), pp. 34693479.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0438
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0438
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading