access icon free Structure–texture image decomposition using a new non-local TV-Hilbert model

Combining the advantages of the non-local total variation (TV) and the Gabor function, a new Gabor function based non-local TV-Hilbert model is presented to separate the structure and texture components of the image. Computationally, by introducing the dual form of the non-local TV, the authors reformulate the non-local TV-Hilbert minimisation problem into a convex–concave saddle-point problem. In the aspect of solving algorithm, by transforming the Chambolle–Pock's first-order primal–dual algorithm into a different equivalent form. The authors propose a proximal-based primal–dual algorithm to solve the convex–concave saddle-point problem. At last, experimental results demonstrate that the proposed new model outperforms several existing state-of-the-art variational models.

Inspec keywords: variational techniques; convex programming; minimisation; image denoising; image texture

Other keywords: convex–concave saddle-point problem; nonlocal total variation; Gabor function; proximal-based primal–dual algorithm; nonlocal TV-Hilbert model; structure–texture image decomposition; nonlocal TV-Hilbert minimisation problem; Chambolle–Pock's first-order primal–dual algorithm; texture components

Subjects: Optical, image and video signal processing; Optimisation techniques; Optimisation techniques; Interpolation and function approximation (numerical analysis); Computer vision and image processing techniques

References

    1. 1)
      • 14. Zibulski, M., Zeevi, Y.Y.: ‘Analysis of multiwindow Gabor-type schemes by frame methods’, Appl. Comput. Harmon. A, 1997, 4, (2), pp. 188221.
    2. 2)
      • 30. Huang, Y., Yan, H., Wen, Y., et al: ‘Rank minimization with applications to image noise removal’, Inf. Sci., 2018, 429, 147163.
    3. 3)
      • 22. Aujol, J.F., Chambolle, A.: ‘Dual norms and image decomposition models’, Int. J. Comput. Vis., 2005, 63, (1), pp. 85104.
    4. 4)
      • 15. Schaeffer, H., Osher, S.: ‘A low patch-rank interpretation of texture’, SIAM J. Imaging Sci., 2013, 6, (1), pp. 226262.
    5. 5)
      • 17. Kristian, B., Thomas, P.: ‘Total generalized variation’, SIAM J Imaging Sci., 2010, 3, (3), pp. 492526.
    6. 6)
      • 18. Florian, K., Kristian, B., Thomas, P., et al: ‘Second order total generalized variation (tgv) for mri’, Magn. Reson. Med., 2011, 65, (2), pp. 480491.
    7. 7)
      • 9. Brezis, H.: ‘Functional analysis, sobolev spaces and partial differential equations’ (Springer, New York, 2012).
    8. 8)
      • 24. Valkonen, T.: ‘A primal-dual hybrid gradient method for nonlinear operators with applications to mri’, Inverse Probl., 2013, 30, (5), pp. 900914.
    9. 9)
      • 8. Osher, S., Solĺę, A., Vese, L.: ‘Image decomposition and restoration using total variation minimization and the h-1 norm’, Multiscale Model Simul., 2003, 1, (3), pp. 349370.
    10. 10)
      • 16. Ono, S., Miyata, T., Yamada, I.: ‘Cartoon-texture image decomposition using blockwise low-rank texture characterization’, IEEE Trans. Image Process., 2014, 23, (3), pp. 11281142.
    11. 11)
      • 6. Aujol, J.F., Gilboa, G., Chan, T., et al: ‘Structure-texture image decomposition-modeling, algorithms, and parameter selection’, Int J Comput. Vis., 2006, 67, (1), pp. 111136.
    12. 12)
      • 29. Chambolle, A., Pock, T.: ‘A first-order primal-dual algorithm for convex problems with applications to imaging’, J. Math. Imaging Vis., 2011, 40, (1), pp. 120145.
    13. 13)
      • 25. Ono, S.: ‘Primal-dual plug-and-play image restoration’, IEEE Signal Process. Lett., 2017, 24, (8), pp. 11081112.
    14. 14)
      • 32. Zhou, W., Bovik, A.C., Sheikh, H.R., et al: ‘Image qualifty assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    15. 15)
      • 23. Chambolle, A.: ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vis., 2004, 20, (1-2), pp. 8997.
    16. 16)
      • 27. Combettes, P.L., Pesquet, J.C.: ‘A proximal decomposition method for solving convex variational inverse problems’, Inverse Probl., 2008, 24, (6), pp. 6501465040.
    17. 17)
      • 19. Gilboa, G., Osher, S.: ‘Nonlocal operators with applications to image processing’, SIAM Multiscale Model Simul., 2008, 7, (3), pp. 10051028.
    18. 18)
      • 1. Ren, H., Lei, Q., Zhu, X.: ‘Speckle reduction and cartoon-texture decomposition of ophthalmic optical coherence tomography images by variational image decomposition’, Optik-Int. J. Light Electron Opt., 2016, 127, (19), pp. 78097821.
    19. 19)
      • 26. Wen, Y.W., Chan, R.H., Zeng, T.Y.: ‘Primal-dual algorithms for total variation based image restoration under poisson noise’, Sci. China Math., 2016, 59, (1), pp. 141160.
    20. 20)
      • 2. Zhang, Y., Li, C., Zhao, Z., et al: ‘Multi-focus image fusion based on cartoon-texture image decomposition’, Optik-Int. J. Light Electron Opt., 2016, 8, (1), pp. 12911296.
    21. 21)
      • 4. Szolgay, D.S., Sziranyi, T.: ‘Adaptive image decomposition into cartoon and texture parts optimized by the orthogonality criterion’, IEEE Trans. Image Process., 2014, 21, (8), pp. 34053415.
    22. 22)
      • 31. Wen, Y.W., Chan, R.H.: ‘Parameter selection for total-variation-based image restoration using discrepancy principle’, IEEE Trans. Image Process., 2012, 21, (4), pp. 17701781.
    23. 23)
      • 20. Zhang, X., Burger, M., Bresson, X., et al: ‘Bregmanized nonlocal regularization for deconvolution and sparse reconstruction’, SIAM J. Imaging Sci., 2010, 3, pp. 253276.
    24. 24)
      • 7. Rudin, L.I., Osher, S., Fatemi, E.: ‘Nonlinear total variation based noise removal algorithms’, Physica D, 1992, 60, pp. 259268.
    25. 25)
      • 28. Dupĺę, F.X, Fadili, J.M., Starck, J.L.: ‘A proximal iteration for deconvolving Poisson noisy images using sparse representations’, IEEE Trans. Image Process., 2009, 18, (2), pp. 310321.
    26. 26)
      • 5. Belyaev, A., Fayolle, P.A.: ‘Adaptive curvature-guided image filtering for structure-texture image decomposition’, IEEE Trans. Image Process., 2018, 27, pp. 51925203.
    27. 27)
      • 13. Jain, A.K., Farrokhnia, F.: ‘Unsupervised texture segmentation using Gabor filters’, Pattern Recognit., 1991, 24, (12), pp. 11671186.
    28. 28)
      • 3. Han, Y., Xu, C., Baciu, G., et al: ‘Lightness biased cartoon-and-texture decomposition for textile image segmentation’, Neurocomputing, 2015, 168, (1), pp. 575587.
    29. 29)
      • 10. Aujol, J.F., Gilboa, G.: ‘Implementation and parameter selection for bv-hilbert space regularizations’. UCLA CAM Report, 2004.
    30. 30)
      • 12. Dunn, D.H.W.: ‘Optimal Gabor filters for texture segmentation’, IEEE Trans. Image Process., 1995, 4, (7), pp. 947964.
    31. 31)
      • 21. Lou, Y., Zhang, X., Osher, S., et al: ‘Image recovery via nonlocal operators’, J. Sci. Comput., 2010, 42, (2), pp. 185197.
    32. 32)
      • 11. Gabor, D.: ‘Theory of communication’, J. Inst. Electr. Eng., 1946, 93, (3), pp. 429457.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0392
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading