Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free DDLA: dual deep learning architecture for classification of plant species

Plant species recognition is performed using a dual deep learning architecture (DDLA) approach. DDLA consists of MobileNet and DenseNet-121 architectures. The feature vectors obtained from individual architectures are concatenated to form a final feature vector. The extracted features are then classified using machine learning (ML) classifiers such as linear discriminant analysis, multinomial logistic regression (LR), Naive Bayes, classification and regression tree, k-nearest neighbour, random forest classifier, bagging classifier and multi-layer perceptron. The dataset considered in the studies is standard (Flavia, Folio, and Swedish Leaf) and custom collected (Leaf-12) dataset. The MobileNet and DenseNet-121 architectures are also used as a feature extractor and a classifier. It is observed that the DDLA architecture with LR classifier produced the highest accuracies of 98.71, 96.38, 99.41, and 99.39% for Flavia, Folio, Swedish leaf, and Leaf-12 datasets. The observed accuracy for DDLA + LR is higher compared with other approaches (DDLA + ML classifiers, MobileNet + ML classifiers, DenseNet-121 + ML classifiers, MobileNet + fully connected layer (FCL), DenseNet-121 + FCL). It is also observed that the DDLA architecture with LR classifier achieves higher accuracy in comparable computation time with other approaches.

References

    1. 1)
      • 4. Wu, S.G., Bao, F.S., Xu, E.Y., et al: ‘A leaf recognition algorithm for plant classification using probabilistic neural network’. IEEE Int. Symp. Signal Processing and Information Technology, Cairo, Egypt, December 2007, pp. 1116.
    2. 2)
      • 13. Liu, N., Kan, J.M.: ‘Improved deep belief networks and multi-feature fusion for leaf identification’, Neurocomputing, 2016, 216, pp. 460467.
    3. 3)
      • 32. Chollet, F.: ‘Xception: deep learning with depthwise separable convolutions’. 2017, arXiv preprint, 1610–02357.
    4. 4)
      • 41. Krishnapuram, B., Carin, L., Figueiredo, M.A., et al: ‘Sparse multinomial logistic regression: fast algorithms and generalization bounds’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (6), pp. 957968.
    5. 5)
      • 22. He, G., Xia, Z., Zhang, Q., et al: ‘Plant species identification by bi-channel deep convolutional networks’, J. Phys., Conf. Ser., 2018, 1004, (1), IOP Publishing, pp. 16, https://iopscience.iop.org/article/10.1088/1742-6596/1004/1/012015/meta.
    6. 6)
      • 11. Saleem, G., Akhtar, M., Ahmed, N., et al: ‘Automated analysis of visual leaf shape features for plant classification’, Comput. Electron. Agric., 2019, 157, pp. 270280.
    7. 7)
      • 27. Pearline, S.A., Kumar, V.S., Harini, S.: ‘A study on plant recognition using conventional image processing and deep learning approaches’, J. Intell. Fuzzy Syst., 2019, 36, (3), pp. 18.
    8. 8)
      • 21. Hu, J., Chen, Z., Yang, M., et al: ‘A multiscale fusion convolutional neural network for plant leaf recognition’, IEEE Signal Process. Lett., 2018, 25, (6), pp. 853857.
    9. 9)
      • 30. Szegedy, C., Vanhoucke, V., Ioffe, S., et al: ‘Rethinking the inception architecture for computer vision’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 28182826.
    10. 10)
      • 31. Szegedy, C., Ioffe, S., Vanhoucke, V., et al: ‘Inception-v4, inception-ResNet and the impact of residual connections on learning’. Proc. 31st AAAI Conf. Artificial Intelligence, San Francisco, USA, February 2017.
    11. 11)
      • 42. Keras documentation’, 2015. Available at: https://keras.io/getting-started/faq/#how-should-i-cite-keras.
    12. 12)
      • 20. Pawara, P., Okafor, E., Surinta, O., et al: ‘Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition’. ICPRAM, Porto, Portugal, February 2017, pp. 479486.
    13. 13)
      • 6. Munisami, T., Ramsurn, M., Kishnah, S., et al: ‘Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers’, Procedia Comput. Sci., 2015, 58, pp. 740747.
    14. 14)
      • 28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’, In NIPS'12 Proc. of the 25th Int. Conf. on Neural Information Processing Systems, vol 1, Lake Tahoe, Nevada, December 2012, pp. 10971105.
    15. 15)
      • 29. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. 2014, arXiv preprint arXiv:1409.1556.
    16. 16)
      • 23. Sulc, M., Mishkin, D., Matas, J.: ‘Very deep residual networks with maxout for plant identification in the wild’. Working Notes of CLEF, Evora, Portugal, September 2016.
    17. 17)
      • 43. Goodfellow, I., Bengio, Y., Courville, A., et al: ‘Deep learning’, vol. 1, (MIT Press, Cambridge, 2016), pp. 322366.
    18. 18)
      • 19. Barré, P., Stöver, B.C., Müller, K.F., et al: ‘LeafNet: a computer vision system for automatic plant species identification’, Ecol. Inf., 2017, 40, pp. 5056.
    19. 19)
      • 25. Atabay, H.A.: ‘A convolutional neural network with a new architecture applied on leaf classification’, IIOAB J., 2016, 7, (5), pp. 226331.
    20. 20)
      • 40. Pedregosa, F., Varoquaux, G., Gramfort, A., et al: ‘Scikit-learn: machine learning in python’, J. Mach. Learn. Res., 2011, 12, (Oct), pp. 28252830.
    21. 21)
      • 18. Liu, Z., Zhu, L., Zhang, X.P., et al: ‘Hybrid deep learning for plant leaves classification’. Int. Conf. Intelligent Computing, Cham, August 2015, pp. 115123.
    22. 22)
      • 2. Jin, T., Hou, X., Li, P., et al: ‘A novel method of automatic plant species identification using sparse representation of leaf tooth features’, PLoS One, 2015, 10,, (10), p. e0139482.
    23. 23)
      • 33. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 770778.
    24. 24)
      • 9. Hu, R.X., Jia, W., Ling, H., et al: ‘Multiscale distance matrix for fast plant leaf recognition’, IEEE Trans. Image Process., 2012, 21, (11), pp. 46674672.
    25. 25)
      • 12. Kour, V.P., Arora, S.: ‘Particle swarm optimization based support vector machine (P-SVM) for the segmentation and classification of plants’, IEEE Access, 2019, 7, pp. 2937429385.
    26. 26)
      • 5. Wang, Z., Sun, X., Zhang, Y., et al: ‘Leaf recognition based on PCNN’, Neural Comput. Appl., 2016, 27, (4), pp. 899908.
    27. 27)
      • 39. Kaiser, L., Gomez, A.N., Chollet, F.: ‘Depthwise separable convolutions for neural machine translation’. 2017, arXiv preprint arXiv:1706.03059.
    28. 28)
      • 24. Zhang, C., Zhou, P., Li, C., et al: ‘A convolutional neural network for leaves recognition using data augmentation’. 2015 IEEE Int. Conf. Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), Liverpool, UK, October 2015, pp. 21432150.
    29. 29)
      • 36. Marsland, S.: ‘Machine learning: an algorithmic perspective’ (Chapman and Hall/CRC, Boca Raton, USA, 2011).
    30. 30)
      • 37. Mitchell, T.M: ‘Machine learning’ (McGraw-Hill, New York, USA, 1997).
    31. 31)
      • 1. Du, J.X., Wang, X.F., Zhang, G.J.: ‘Leaf shape based plant species recognition’, Appl. Math. Comput., 2007, 185, (2), pp. 883893.
    32. 32)
      • 15. Ghazi, M.M., Yanikoglu, B., Aptoula, E.: ‘Plant identification using deep neural networks via optimization of transfer learning parameters’, Neurocomputing, 2017, 235, pp. 228235.
    33. 33)
      • 7. Söderkvist, O.: ‘Computer vision classification of leaves from Swedish trees’. Master's thesis, Linkoping University, 2001.
    34. 34)
      • 26. Kaya, A., Keceli, A.S., Catal, C., et al: ‘Analysis of transfer learning for deep neural network based plant classification models’, Comput. Electron. Agric., 2019, 58, pp. 2029.
    35. 35)
      • 35. Howard, A.G., Zhu, M., Chen, B., et al: ‘MobileNets: efficient convolutional neural networks for mobile vision applications’. 2017, arXiv preprint arXiv:1704.04861.
    36. 36)
      • 34. Huang, G., Liu, Z., Van Der Maaten, L., et al: ‘Densely connected convolutional networks’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 47004708.
    37. 37)
      • 14. Tan, J.W., Chang, S.W., Kareem, S.B.A., et al: ‘Deep learning for plant species classification using leaf vein morphometric’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2018, p. 1, https://ieeexplore.ieee.org/abstract/document/8388220.
    38. 38)
      • 17. Lee, S.H., Chan, C.S., Mayo, S.J., et al: ‘How deep learning extracts and learns leaf features for plant classification’, Pattern Recognit., 2017, 71, pp. 113.
    39. 39)
      • 16. Sun, Y., Liu, Y., Wang, G., et al: ‘Deep learning for plant identification in natural environment’, Comput. Intell. Neurosci., 2017, 2017, p. 6.
    40. 40)
      • 8. Kulkarni, A.H., Rai, H.M., Jahagirdar, K.A., et al: ‘A leaf recognition technique for plant classification using RBPNN and Zernike moments’, Int. J. Adv. Res. Comput. Commun. Eng., 2013, 2, (1), pp. 984988.
    41. 41)
      • 38. Iandola, F.N., Han, S., Moskewicz, M.W., et al: ‘SqueezeNet: AlexNet-level accuracy with 50 × fewer parameters and <0.5 mb model size’. 2016, arXiv preprint arXiv:1602.07360.
    42. 42)
      • 3. Aakif, A., Khan, M.F.: ‘Automatic classification of plants based on their leaves’, Biosyst. Eng., 2015, 139, pp. 6675.
    43. 43)
      • 10. Wang, X., Feng, B., Bai, X., et al: ‘Bag of contour fragments for robust shape classification’, Pattern Recognit., 2014, 47, (6), pp. 21162125.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0346
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0346
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address