http://iet.metastore.ingenta.com
1887

Adaptive multilayer level set method for segmenting images with intensity inhomogeneity

Adaptive multilayer level set method for segmenting images with intensity inhomogeneity

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The level set method based on bias correction can segment images with gentle intensity inhomogeneity effectively. However, most level set methods fail to segment severe inhomogeneous images due to the use of fixed scale clustering criterion. To deal with this problem, an adaptive multilayer level set method is proposed to segment images with severe intensity inhomogeneity. First, an improved global adaptive scale operator and a local adaptive scale operator are designed to adaptively adjust the scale of clustering kernel function according to the degree of intensity inhomogeneity. Then, an adaptive multilayer level set structure is constructed with the two designed scale operators. The number of layers and the scale of each layer in the multilayer structure are adaptively determined based on the degree of intensity inhomogeneity, which not only provides appropriate candidate scales in each pixel but also allows the model to detect global contrast information. With the dual minimisation method, image segmentation and bias correction can be achieved simultaneously. In addition, a hybrid bias field initialisation procedure is proposed to enhance the robustness of the proposed method. Experimental results demonstrate the effectiveness and robustness of the proposed method in segmenting images with intensity inhomogeneity.

References

    1. 1)
      • 1. Li, C., Huang, R., Ding, Z., et al: ‘A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI’, IEEE Trans. Image Process., 2011, 20, (7), pp. 20072016.
    2. 2)
      • 2. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331.
    3. 3)
      • 3. Osher, S., Sethian, J.A.: ‘Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations’, J. Comput. Phys., 1988, 79, (1), pp. 1249.
    4. 4)
      • 4. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vis., 1997, 22, (1), pp. 6179.
    5. 5)
      • 5. Li, C., Xu, C., Gui, C., et al: ‘Distance regularized level set evolution and its application to image segmentation’, IEEE Trans. Image Process., 2010, 19, (12), pp. 32433254.
    6. 6)
      • 6. Ali, H., Badshah, N., Chen, K., et al: ‘A variational model with hybrid images data fitting energies for segmentation of images with intensity inhomogeneity’, Pattern Recognit., 2016, 51, pp. 2742.
    7. 7)
      • 7. Liu, C., Liu, W., Xing, W.: ‘An improved edge-based level set method combining local regional fitting information for noisy image segmentation’, Signal Process., 2017, 130, pp. 1221.
    8. 8)
      • 8. Wang, L., Chen, G., Shi, D., et al: ‘Active contours driven by edge entropy fitting energy for image segmentation’, Signal Process., 2018, 149, pp. 2735.
    9. 9)
      • 9. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277.
    10. 10)
      • 10. Liu, Y., He, C., Wu, Y., et al: ‘The L0-regularized discrete variational level set method for image segmentation’, Image Vis. Comput., 2018, 75, pp. 3243.
    11. 11)
      • 11. Wu, Y., He, C.: ‘A convex variational level set model for image segmentation’, Signal Process., 2015, 106, pp. 123133.
    12. 12)
      • 12. Zhang, K., Zhang, L., Song, H., et al: ‘Active contours with selective local or global segmentation: a new formulation and level set method’, Image Vis. Comput., 2010, 28, (4), pp. 668676.
    13. 13)
      • 13. Dong, F., Chen, Z., Wang, J.: ‘A new level set method for inhomogeneous image segmentation’, Image Vis. Comput., 2013, 31, (10), pp. 809822.
    14. 14)
      • 14. Wang, X.-F., Zou, L., Xu, L.-X., et al: ‘Hybrid level set method based on image diffusion’, Neurocomputing, 2017, 228, pp. 5364.
    15. 15)
      • 15. Mumford, D., Shah, J.: ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math., 1989, 42, (5), pp. 577685.
    16. 16)
      • 16. Li, C., Kao, C., Gore, J.C., et al: ‘Implicit active contours driven by local binary fitting energy’. 2007 IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007, pp. 17.
    17. 17)
      • 17. Li, C., Kao, C.-Y., Gore, J.C., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, (10), pp. 19401949.
    18. 18)
      • 18. Wang, X.-F., Huang, D.-S., Xu, H.: ‘An efficient local Chan-Vese model for image segmentation’, Pattern Recognit., 2010, 43, (3), pp. 603618.
    19. 19)
      • 19. Zhang, K., Song, H., Zhang, L.: ‘Active contours driven by local image fitting energy’, Pattern Recognit., 2010, 43, (4), pp. 11991206.
    20. 20)
      • 20. Ji, Z., Xia, Y., Sun, Q., et al: ‘Active contours driven by local likelihood image fitting energy for image segmentation’, Inf. Sci., 2015, 301, pp. 285304.
    21. 21)
      • 21. Wang, L., Chang, Y., Wang, H., et al: ‘An active contour model based on local fitted images for image segmentation’, Inf. Sci., 2017, 418–419, pp. 6173.
    22. 22)
      • 22. Chen, Y., Yue, X., Xu, R.Y.D., et al: ‘Region scalable active contour model with global constraint’, Knowl.-Based Syst., 2017, 120, pp. 5773.
    23. 23)
      • 23. Min, H., Lu, J.T, Jia, W., et al: ‘An effective local regional model based on salient fitting for image segmentation’, Neurocomputing, 2018, 311, pp. 245259.
    24. 24)
      • 24. Vovk, U., Pernus, F., Likar, B.: ‘A review of methods for correction of intensity inhomogeneity in MRI’, IEEE Trans. Med. Imaging, 2007, 26, (3), pp. 405421.
    25. 25)
      • 25. Li, C., Gore, J.C., Davatzikos, C.: ‘Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation’, Magn. Reson. Imaging, 2014, 32, (7), pp. 913923.
    26. 26)
      • 26. Feng, C., Zhao, D., Huang, M.: ‘Image segmentation and bias correction using local inhomogeneous iNtensity clustering (LINC): a region-based level set method’, Neurocomputing, 2017, 219, pp. 107129.
    27. 27)
      • 27. Zhan, T., Zhang, J., Xiao, L., et al: ‘An improved variational level set method for MR image segmentation and bias field correction’, Magn. Reson. Imaging, 2013, 31, (3), pp. 439447.
    28. 28)
      • 28. Zhang, K., Zhang, L., Lam, K.-M, et al: ‘A level set approach to image segmentation with intensity inhomogeneity’, IEEE Trans. Cybern., 2016, 46, (2), pp. 546557.
    29. 29)
      • 29. Zhang, K., Liu, Q., Song, H., et al: ‘A variational approach to simultaneous image segmentation and bias correction’, IEEE Trans. Cybern., 2015, 45, (8), pp. 14261437.
    30. 30)
      • 30. Huang, C., Zeng, L.: ‘An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation’, PLoS ONE, 2015, 10, (4), pp. 124.
    31. 31)
      • 31. Wang, L., Zhu, J., Sheng, M., et al: ‘Simultaneous segmentation and bias field estimation using local fitted images’, Pattern Recognit., 2018, 74, pp. 145155.
    32. 32)
      • 32. Piovano, J., Papadopoulo, T.: ‘Local statistic based region segmentation with automatic scale selection’. European Conf. on Computer Vision (ECCV 2008), Marseille, France, 2008, pp. 486499.
    33. 33)
      • 33. Cai, Q., Liu, H., Zhou, S., et al: ‘An adaptive-scale active contour model for inhomogeneous image segmentation and bias field estimation’, Pattern Recognit., 2018, 82, pp. 7993.
    34. 34)
      • 34. Huang, G., Ji, H., Zhan, W.: ‘A fast level set method for inhomogeneous image segmentation with adaptive scale parameter’, Magn. Reson. Imaging, 2018, 52, pp. 3345.
    35. 35)
      • 35. Sui, H.G., Xu, C., Liu, J.Y., et al: ‘A novel multi-scale level set method for SAR image segmentation based on a statistical model’, Int. J. Remote Sens., 2012, 33, (17), pp. 56005614.
    36. 36)
      • 36. Wang, X.-F., Min, H., Zhang, Y.-G.: ‘Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity’, Neurocomputing, 2015, 151, (3), pp. 10861098.
    37. 37)
      • 37. Min, H., Wang, X.-F., Huang, D.-S., et al: ‘A novel dual minimization based level set method for image segmentation’, Neurocomputing, 2016, 214, pp. 910926.
    38. 38)
      • 38. Zhang, K., Zhang, L., Song, H., et al: ‘Reinitialization-free level set evolution via reaction diffusion’, IEEE Trans. Image Process., 2013, 22, (1), pp. 258271.
    39. 39)
      • 39. ‘Image segmentation methods Comparison with MRI’, Available at: https://www.mathworks.com/matlabcentral/fileexchange/62574-image-segmentation-methods-comparison-with-mri, accessed 25 April 2019.
    40. 40)
      • 40. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    41. 41)
      • 41. Bezdek, J.C., Ehrlich, R., Full, W.: ‘FCM: the Fuzzy c-means clustering algorithm’, Comput. Geosci., 1984, 10, pp. 191203.
    42. 42)
      • 42. Sezgin, M., Sankur, B.: ‘Survey over image thresholding techniques and quantitative performance evaluation’, J. Electron. Imaging, 2004, 13, (1), pp. 146168.
    43. 43)
      • 43. Yuan, J., Bae, E., Tai, X.C.: ‘A study on continuous max-flow and min-cut approaches’. 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, 2010, pp. 22172224.
    44. 44)
      • 44. Aja-Fernandez, S., Curiale, A.H., Vegas-Sanchez-Ferrero, G.: ‘A local Fuzzy thresholding methodology for multiregion image segmentation’, Knowl.-Based Syst., 2015, 83, pp. 112.
    45. 45)
      • 45. Wang, Z.Z.: ‘A new approach for segmentation and quantification of cells or nanoparticles’, IEEE Trans. Ind. Inf., 2016, 12, (3), pp. 962971.
    46. 46)
      • 46. Wang, Z.Z.: ‘Segmentation of the left ventricle in short-axis sequences by combining deformation flow and optical flow’, IET Image Process., 2017, 11, (4), pp. 237244.
    47. 47)
      • 47. ‘BrainWeb: Simulated Brain Database’, available at: http://brainweb.bic.mni.mcgill.ca/brainweb, accessed 12 March 2019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0315
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address