Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Texture spectral similarity criteria

New similarity criteria capable of assessing spectral modelling plausibility of colour, bidirectional texture functions (BTF), and hyperspectral textures are presented. The criteria credibly compare the multi-spectral pixel values of the textures. They simultaneously consider the pixels of similar values and their mutual ratios. It allows support of the optimal modelling or acquisition setup development by comparing the original data with its synthetic simulations. Analytical applications of the criteria can be spectral based texture retrieval or classification. The suggested criteria together with existing alternatives are extensively tested and compared on a wide variety of colour, BTF, and hyperspectral textures. The performance quality of the criteria is examined in a long series of thousands specially designed monotonically degrading experiments, where proposed ones outperform all tested alternatives.

References

    1. 1)
      • 19. Rubner, Y., Tomasi, C., Guibas, L.J.: ‘The earth mover's distance as a metric for image retrieval’, Int. J. Comput. Vis., 2000, 40, (2), pp. 99121. Available at http://dx.doi.org/10.1023/A:1026543900054.
    2. 2)
      • 16. Kokare, M., Chatterji, B., Biswas, P.: ‘Comparison of similarity metrics for texture image retrieval’. TENCON 2003 Conf. Convergent Technologies for the Asia-Pacific Region, Bangalore, India, 2003, vol. 2, pp. 571575.
    3. 3)
      • 10. Haindl, M., Mikeš, S.: ‘Unsupervised texture segmentation using multispectral modelling approach’. Proc. 18th Int. Conf. Pattern Recognition ICPR 2006, 2006, vol. II, pp. 203206. Available at http://doi.ieeecomputersociety.org/10.1109/ICPR.2006.1148.
    4. 4)
      • 14. Howarth, P., Rüger, S.M.: ‘Fractional distance measures for content-based image retrieval’. European Conf. Information Retrieval (ECIR), Santiago de Compostela, Spain, 2005 (LNCS, 3408), pp. 447456. Available at http://dblp.uni-trier.de/db/conf/ecir/ecir2005.html#HowarthR05.
    5. 5)
      • 20. Cuturi, M., Peyré, G.: ‘A smoothed dual approach for variational Wasserstein problems’, SIAM J. Imaging Sci., 2016, 9, (1), pp. 320343.
    6. 6)
      • 15. Swain, M.J., Ballard, D.H.: ‘Color indexing’, Int. J. Comput. Vis., 1991, 7, (1), pp. 1132.
    7. 7)
      • 9. Ojala, T., Pietikäinen, M., Mäenpää, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    8. 8)
      • 6. Galloway, M.M.: ‘Texture analysis using gray level run lengths’, Comput. Graph. Image Process., 1975, 4, (2), pp. 172179.
    9. 9)
      • 8. Manjunath, B.S., Ma, W.Y.: ‘Texture features for browsing and retrieval of image data’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (8), pp. 837842.
    10. 10)
      • 13. Yuan, J., Wang, D., Cheriyadat, A.M.: ‘Factorization-based texture segmentation’, IEEE Trans. Image Process., 2015, 24, (11), pp. 34883497.
    11. 11)
      • 21. Mindru, F., Moons, T., Gool, L.V.: ‘Color-based moment invariants for viewpoint and illumination independent recognition of planar color patterns’. Illumination Independent Recognition of Planar Color Patterns Proc. ICAPR'98, Rio de Janeiro, Brazil, 1998, pp. 113122.
    12. 12)
      • 4. Kudělka, M., Haindl, M.: ‘Texture fidelity criterion’. 2016 IEEE Int. Conf. Image Processing (ICIP), Phoenix, USA, 2016, pp. 20622066. Available at http://2016.ieeeicip.org/.
    13. 13)
      • 22. Moroney, N., Gottwals, M.M., Tasti, I.: ‘Generating color similarity measures’. Google Patents, US Patent App. 15/307,349, 2017.
    14. 14)
      • 2. Wang, Z., Simoncelli, E.P.: ‘Translation insensitive image similarity in complex wavelet domain’. IEEE Int. Conf. Acoustics, Speech, and Signal Processing 2005 Proc. (ICASSP 05), Philadelphia, USA, 2005, pp. 573576.
    15. 15)
      • 1. Haindl, M., Kudělka, M.J.: ‘Texture fidelity benchmark’. 2014 Int. Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Paris, France, 2014, pp. 15. Available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=7008812isnumber=7008791.
    16. 16)
      • 30. Sattler, M., Sarlette, R., Klein, R.: ‘Efficient and realistic visualization of cloth’. Eurographics Symp. Rendering 2003, Leuven, Belgium, 2003.
    17. 17)
      • 25. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612. Available at http://dx.doi.org/10.1109/TIP.2003.819861.
    18. 18)
      • 3. Zujovic, J., Pappas, T.N., Neuhoff, D.L.: ‘Structural texture similarity metrics for image analysis and retrieval’, IEEE Trans. Image Process., 2013, 22, (7), pp. 25452558.
    19. 19)
      • 17. Puzicha, J., Hofmann, T., Buhmann, J.M.: ‘Non-parametric similarity measures for unsupervised texture segmentation and image retrieval’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 267272.
    20. 20)
      • 23. Jaccard, P.: ‘Etude comparative de la distribution florale dans une portion des Alpes et du Jura’. (Impr. Corbaz, Basel, Switzerland, 1901).
    21. 21)
      • 27. Mahy, M., Eycken, L., Oosterlinck, A.: ‘Evaluation of uniform color spaces developed after the adoption of CIE Lab and CIE Luv’, Color Res. Appl., 1994, 19, (2), pp. 105121.
    22. 22)
      • 12. Viethen, J., van Vessem, T., Goudbeek, M., et al: ‘Color in reference production: the role of color similarity and color codability’, Cogn. Sci., 2017, 41, pp. 14931514.
    23. 23)
      • 26. Niu, Y., Zhang, H., Guo, W., et al: ‘Image quality assessment for color correction based on color contrast similarity and color value difference’, IEEE Trans. Circuits Syst. Video Technol., 2018, 28, (4), pp. 849862.
    24. 24)
      • 11. Haindl, M., Filip, J.: ‘Visual texture’, in Singh, S., Kang, S.B. (Eds.): ‘Advances in computer vision and pattern recognition’ (Springer-Verlag London, London, 2012).
    25. 25)
      • 29. Dana, K.J., Nayar, S.K., van Ginneken, B., et al: ‘Reflectance and texture of real-world surfaces’. Computer Vision and Pattern Recognition (CVPR), San Juan, Puerto Rico, 1997, pp. 151157.
    26. 26)
      • 24. Dice, L.R.: ‘Measures of the amount of ecologic association between species’, Ecology, 1945, 26, (3), pp. 297302.
    27. 27)
      • 5. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, SMC-3, (6), pp. 610621.
    28. 28)
      • 7. Laws, K.I.: ‘Rapid texture identification’. Proc. SPIE Conf. Image Processing for Missile Guidance, San Diego, USA, 1980, pp. 376380.
    29. 29)
      • 28. Wyszecki, G., Stiles, W.S.: ‘Color science’, vol. 8 (Wiley, New York, 1982).
    30. 30)
      • 18. Zhang, D., Lu, G.: ‘Evaluation of similarity measurement for image retrieval’. Proc. 2003 Int. Conf. Neural Networks and Signal Processing, 2003, Nanjing, China, 2003, vol. 2, pp. 928931.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0250
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0250
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address