http://iet.metastore.ingenta.com
1887

Lightweight cascade framework for optic disc segmentation

Lightweight cascade framework for optic disc segmentation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The accurate segmentation of the optic disc (OD) is important in diagnosing and evaluating many retinal diseases. However, the OD boundary is unclear, making the task of automatic OD segmentation very challenging. Recently,many researchers have applied convolutional neural network (CNN) technology to the automatic segmentation of OD ,and the network has been widened and deepened. It can effectively improves the accuracy of segmentation but also requires high computational complexity and large memory consumption. To overcome the above defects, we propose a segmentation framework of a lightweight cascade CNN. It consists of a designed-to-be-lightweight segmentation network and a shape-refinement network cascade, cascading a shape-refined network behind a segmentation network to compensate for the degraded performance of the segmentation network after lightweight design. We tested our framework on three databases, DRIVE, DIARETDB1, and DRIONS-DB, and found that its segmentation performance is slightly better than that of u-net, and the trainable parameters are approximately 1/35 that of u-net. After verified by the DRIVE dataset, the memory used for training and testing is only about 1/3 of u-net. The method proposed in this paper can greatly reduce trainable parameters and computational resource consumption while guaranteeing satisfactory segmentation performance of the model.

References

    1. 1)
      • 1. Carmona, E.J., Rincón, M., García-Feijoó, J., et al: ‘Identification of the optic nerve head with genetic algorithms’, Artif. Intell. Med., 2008, 43, (3), pp. 243259.
    2. 2)
      • 2. Al-Bander, B., Al-Nuaimy, W., Williams, B.M., et al: ‘Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc’, Biomed. Signal Process. Control, 2018, 40, pp. 91101.
    3. 3)
      • 3. Mckeague, C., Margrain, T.H., Bailey, C., et al: ‘Low-level night-time light therapy for age-related macular degeneration (ALight): study protocol for a randomized controlled trial’, Trials, 2014, 15, (1), pp. 19.
    4. 4)
      • 4. Kumar, J.R.H., Pediredla, A.K., Seelamantula, C.S.: ‘Active discs for automated optic disc segmentation’. Signal and Information Processing, Orlando, USA, 2016, pp. 225229.
    5. 5)
      • 5. Ashraf, M.N., Habib, Z., Hussain, M.: ‘Computer Aided Diagnosis of Diabetic Retinopathy’, 2015.
    6. 6)
      • 6. Salih, N.D., Saleh, M.D., Eswaran, C., et al: ‘Fast optic disc segmentation using FFT-based template-matching and region-growing techniques’, Computer Methods in Biomech. Biomed. Eng. Imaging & Visualization, 2017, 6, (1), pp. 112.
    7. 7)
      • 7. Sedai, S., Roy, P.K., Mahapatra, D., et al: ‘Segmentation of optic disc and optic cup in retinal fundus images using shape regression’. Engineering in Medicine and Biology Society.Orlando, USA, 2016, pp. 32603264.
    8. 8)
      • 8. Singh, A., Dutta, M.K., Parthasarathi, M., et al: ‘Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image’, Comput. Methods Programs Biomed., 2016, 124, (C), pp. 108120.
    9. 9)
      • 9. Cheng, J., Liu, J., Xu, Y., et al: ‘Superpixel classification for initialization in model based optic disc segmentation’. Engineering in Medicine and Biology Society.San Diego, USA, 2012, pp. 14501453.
    10. 10)
      • 10. Alam, F.I., Zhou, J., Liew, W.C., et al: ‘Conditional random field and deep feature learning for hyperspectral image segmentation’. 2018.
    11. 11)
      • 11. Zilly, J., Buhmann, J.M., Mahapatra, D.: ‘Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation’, Comput. Med. Imaging Graph., 2017, 55, pp. 2841.
    12. 12)
      • 12. Sevastopolsky, A.: ‘Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network’, Pattern Recogn. Image Anal., 2017, 27, (3), pp. 618624.
    13. 13)
      • 13. Maninis, K.K., Ponttuset, J., Arbeláez, P., et al: ‘Deep retinal image understanding’, 2016.
    14. 14)
      • 14. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, Comput. Sci., 2014.
    15. 15)
      • 15. Shankaranarayana, S.M., Ram, K., Mitra, K., et al: ‘Joint optic disc and cup segmentation using fully convolutional and adversarial networks’, 2017.
    16. 16)
      • 16. Iandola, F.N., Han, S., Moskewicz, M.W., et al: ‘Squeezenet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size’, 2016.
    17. 17)
      • 17. Zhang, X., Zhou, X., Lin, M., et al: ‘Shufflenet: an extremely efficient convolutional neural network for Mobile devices’, 2017.
    18. 18)
      • 18. Zhang, T., Qi, G.J., Xiao, B., et al: ‘Interleaved group convolutions for deep neural networks’, 2017.
    19. 19)
      • 19. Staal, J., Abràmoff, M.D., Niemeijer, M., et al: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    20. 20)
      • 20. Kauppi, T., Kalesnykiene, V., Kamarainen, J.K., et al: ‘DIARETDB1 diabetic retinopathy database and evaluation protocol’. British Machine Vision Conf. 2007, Warwick, UK, September 2007.
    21. 21)
      • 21. Walter, S.D.: ‘The partial area under the summary ROC curve’, Stat. Med., 2005, 24, (13), p. 2025.
    22. 22)
      • 22. Ronneberger, O., Fischer, P., Brox, T.: ‘U-Net: convolutional networks for biomedical image segmentation’. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015, pp. 234241.
    23. 23)
      • 23. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on ImageNet classification’, 2015, pp. 10261034.
    24. 24)
      • 24. Bharkad, S.: ‘Automatic segmentation of optic disk in retinal images’, Biomed. Signal Process. Control, 2017, 31, pp. 483498.
    25. 25)
      • 25. Tan, J.H., Acharya, U.R., Bhandary, S.V., et al: ‘Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network’, J. Comput. Sci., 2017, 20, pp. 7079.
    26. 26)
      • 26. Zahoor, M.N., Fraz, M.M.: ‘Fast optic disc segmentation in retinal images using polar transform’, 2017.
    27. 27)
      • 27. Basit, A., Fraz, M.M.: ‘Optic disc detection and boundary extraction in retinal images’, Appl. Opt., 2015, 54, (11), pp. 34403447.
    28. 28)
      • 28. Abdullah, M.A., Fraz, M.M., Barman, S.: ‘Localization and segmentation of optic disc in retinal images using circular Hough transform and grow-cut algorithm’, PeerJ, 2016, 4.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0244
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address