access icon free Bio-inspired contour detection model based on multi-bandwidth fusion and logarithmic texture inhibition

Relevant physiological studies have revealed that the response of the classical receptive field (CRF) to visual stimuli could be suppressed by non-CRF (nCRF) inhibition of the kernel in the primary visual cortex (V1). Based on this mechanism, many bio-inspired contour detection models have been proposed, which are mainly achieved through CRF responses and nCRF surround inhibition calculation. In fact, the dynamic characteristics of neurons play an important role in contour detection in biological vision. Inspired by these visual mechanisms, the authors propose a contour detection model that emulates these dynamic characteristics. By introducing a multi-bandwidth Gabor filter, according to the target image, they can effectively adjust the weight ratios of the filter to protect the contours and filter the background textures in the calculation of CRF responses. Additionally, they logarithmically modulate the nCRF inhibition kernel to make texture suppression more flexible and effective, thus improving the accuracy of detection algorithm as a whole. Compared with existing bio-inspired contour detection models, the proposed model is more effective at contour detection, which will aid engineering applications that utilise pattern recognition in machine vision.

Inspec keywords: Gabor filters; visual perception; object detection; image texture; pattern recognition; computer vision

Other keywords: CRF responses; multibandwidth fusion; visual stimuli; logarithmic texture inhibition; primary visual cortex; multi-bandwidth Gabor filter; non-CRF inhibition; nCRF inhibition kernel; bio-inspired contour detection models; detection algorithm; dynamic characteristics; bio-inspired contour detection model; visual mechanisms

Subjects: Filtering methods in signal processing; Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 54. Kokkinos, I.: ‘Pushing the boundaries of boundary detection using deep learning’. ICLR 2016, San Juan, Puerto Rico, 2015.
    2. 2)
      • 32. Ursino, M., La Cara, G.E.: ‘A model of contextual interactions and contour detection in primary visual cortex’, Neural Netw., 2004, 17, (5), pp. 719735.
    3. 3)
      • 52. Liu, Y., Cheng, M.-M., Hu, X., et al: ‘Richer convolutional features for edge detection’. Proc. of the IEEE Conf. On Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2017.
    4. 4)
      • 49. Maire, M., Arbeláez, P., Fowlkes, C., et al: ‘Using contours to detect and localize junctions in natural images’. IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008.
    5. 5)
      • 4. Wang, H, Oliensis, J: ‘Salient contour detection using a global contour discontinuity measurement’. 2006 Conf. on Computer Vision and Pattern Recognition Workshop (CVPRW'06), New York, USA, 2006.
    6. 6)
      • 44. Tuytelaars, T., Turina, A., Van Gool, L.: ‘Noncombinatorial detection of regular repetitions under perspective skew’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (4), pp. 418432.
    7. 7)
      • 37. Zeng, C., Li, Y., Li, C.: ‘Center–surround interaction with adaptive inhibition: a computational model for contour detection’, NeuroImage, 2011, 55, (1), pp. 4966.
    8. 8)
      • 53. Ilg, E., Mayer, N., Saikia, T., et al: ‘Deep crisp boundaries’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, Hawaii, 2017.
    9. 9)
      • 23. Grigorescu, C., Petkov, N., Westenberg, M.A.: ‘Contour detection based on nonclassical receptive field inhibition’, IEEE Trans. Image Process., 2003, 12, (7), pp. 729739.
    10. 10)
      • 56. Martin, D., Fowlkes, C., Tal, D., et al: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. Proc. Eighth IEEE Int. Conf. on Computer Vision, Vancouver, Canada, 2001.
    11. 11)
      • 62. Wang, X.: ‘Laplacian Operator-Based Edge Detectors’, IEEE transactions on pattern analysis and machine intelligence, 2007, 29, (5), pp. 886890.
    12. 12)
      • 28. La Cara, G.-E., Ursino, M.: ‘A model of contour extraction including multiple scales, flexible inhibition and attention’, Neural Netw., 2008, 21, (5), pp. 759773.
    13. 13)
      • 47. Li, H., Yezzi, A.: ‘Local or global minima: flexible dual-front active contours’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (1), pp. 114.
    14. 14)
      • 48. Bresson, X., Vandergheynst, P., Thiran, J.-P.: ‘A variational model for object segmentation using boundary information and shape prior driven by the Mumford–Shah functional’, Int. J. Comput. Vis., 2006, 68, (2), pp. 145162.
    15. 15)
      • 13. Lewis, A.S., Knowles, G.: ‘Image compression using the 2-D wavelet transform’, IEEE Trans. Image Process., 1992, 1, (2), pp. 244250.
    16. 16)
      • 10. Kovesi, P: ‘Phase congruency detects corners and edges’. The Australian Pattern Recognition Society Conf.: DICTA, Sydney, Australia, 2003.
    17. 17)
      • 51. Xie, S., Tu, Z.: ‘Holistically-nested edge detection’. Proc. of the IEEE Int. Conf. on Computer Vision, Santiago, Chile, 2015.
    18. 18)
      • 38. Papari, G., Petkov, N.: ‘An improved model for surround suppression by steerable filters and multilevel inhibition with application to contour detection’, Pattern Recognit., 2011, 44, (9), pp. 19992007.
    19. 19)
      • 55. Zhao, R., Wu, M., Liu, X., et al: ‘Orientation histogram-based center-surround interaction: an integration approach for contour detection’, Neural Comput., 2017, 29, (1), pp. 171193.
    20. 20)
      • 42. Ben-Shahar, O., Zucker, S.W.: ‘The perceptual organization of texture flow: a contextual inference approach’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (4), pp. 401417.
    21. 21)
      • 60. van Vliet, L.J., Young, I.T., Beckers, G.L.: ‘A nonlinear Laplace operator as edge detector in noisy images’, Comput. Vis. Graph. Image Process., 1989, 45, (2), pp. 167195.
    22. 22)
      • 46. Paragios, N., Mellina-Gottardo, O., Ramesh, V.: ‘Gradient vector flow fast geodesic active contours’. Proc. Eighth IEEE Int. Conf. on Computer Vision. ICCV 2001, Vancouver, Canada, 2001.
    23. 23)
      • 45. Papari, G., Petkov, N.: ‘Adaptive pseudo dilation for gestalt edge grouping and contour detection’, IEEE Trans. Image Process., 2008, 17, (10), pp. 19501962.
    24. 24)
      • 58. Kulikowski, J.J., Bishop, P.O.: ‘Fourier analysis and spatial representation in the visual cortex’, Experientia, 1981, 37, (2), pp. 160163.
    25. 25)
      • 31. Ren, X: ‘Multi-scale improves boundary detection in natural images’. European Conf. on Computer Vision, Marseille, France, 2008.
    26. 26)
      • 21. Jones, H., Grieve, K., Wang, W., et al: ‘Surround suppression in primate V1’, J. Neurophysiol., 2001, 86, (4), pp. 20112028.
    27. 27)
      • 3. Tang, Y., Wu, X.: ‘Scene text detection using superpixel-based stroke feature transform and deep learning based region classification’, IEEE Trans. Multimed., 2018, 20, (9), pp. 22762288.
    28. 28)
      • 57. Jones, J.P., Palmer, L.A.: ‘An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex’, J. Neurophysiol., 1987, 58, (6), pp. 12331258.
    29. 29)
      • 29. Li, Z.: ‘A neural model of contour integration in the primary visual cortex’, Neural Comput., 1998, 10, (4), pp. 903940.
    30. 30)
      • 6. Canny, J.: ‘A computational approach to edge detection’, IEEE Trans. Pattern Anal. Mach. Intell., 1986, PAMI-8, (6), pp. 679698.
    31. 31)
      • 65. Comaniciu, D., Meer, P.: ‘Mean shift: a robust approach toward feature space analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (5), pp. 603619.
    32. 32)
      • 43. Amir, A., Lindenbaum, M.: ‘A generic grouping algorithm and its quantitative analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (2), pp. 168185.
    33. 33)
      • 33. Kapadia, M.K., Westheimer, G., Gilbert, C.D.: ‘Spatial distribution of contextual interactions in primary visual cortex and in visual perception’, J. Neurophysiol., 2000, 84, (4), pp. 20482062.
    34. 34)
      • 8. Morrone, M.C., Owens, R.A.: ‘Feature detection from local energy’, Pattern Recognit. Lett., 1987, 6, (5), pp. 303313.
    35. 35)
      • 20. Guo, K., Robertson, R.G., Mahmoodi, S., et al: ‘Centre-surround interactions in response to natural scene stimulation in the primary visual cortex’, Eur. J. Neurosci., 2005, 21, (2), pp. 536548.
    36. 36)
      • 12. Chabre, M., Deterre, P.: ‘Molecular mechanism of visual transduction’, Eur. J. Biochem., 1989, 179, (2), pp. 255266.
    37. 37)
      • 26. Long, L, Li, Y: ‘Contour detection based on the property of orientation selective inhibition of non-classical receptive field’. 2008 IEEE Conf. on Cybernetics and Intelligent Systems, Chengdu, China, 2008.
    38. 38)
      • 25. Chao-Yi, L., Yi-Xiong, Z., Xing, P., et al: ‘Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells’, Vis. Res., 1992, 32, (2), pp. 219228.
    39. 39)
      • 5. Cherri, A.K., Karim, M.A.: ‘Optical symbolic substitution: edge detection using Prewitt, Sobel, and Roberts operators’, Appl. Opt., 1989, 28, (21), pp. 46444648.
    40. 40)
      • 64. Tang, Q., Sang, N., Zhang, T.: ‘Extraction of salient contours from cluttered scenes’, Pattern Recognit., 2007, 40, (11), pp. 31003109.
    41. 41)
      • 36. Zeng, C., Li, Y., Yang, K., et al: ‘Contour detection based on a non-classical receptive field model with butterfly-shaped inhibition subregions’, Neurocomputing, 2011, 74, (10), pp. 15271534.
    42. 42)
      • 40. Tang, Q., Sang, N., Liu, H.: ‘Contrast-dependent surround suppression models for contour detection’, Pattern Recognit., 2016, 60, pp. 5161.
    43. 43)
      • 14. Kim, D.-S., Lee, W.-H., Kweon, I.-S.: ‘Automatic edge detection using 3 × 3 ideal binary pixel patterns and fuzzy-based edge thresholding’, Pattern Recognit. Lett., 2004, 25, (1), pp. 101106.
    44. 44)
      • 24. McIlwain, J.T.: ‘Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity’, J. Neurophysiol., 1964, 27, (6), pp. 11541173.
    45. 45)
      • 39. Yang, K.-F., Li, C.-Y., Li, Y.-J.: ‘Multifeature-based surround inhibition improves contour detection in natural images’, IEEE Trans. Image Process., 2014, 23, (12), pp. 50205032.
    46. 46)
      • 7. Chen, B., Jung, C., Zhang, Z.: ‘Variational fusion of time-of-flight and stereo data for depth estimation using edge-selective joint filtering’, IEEE Trans. Multimed., 2018, 20, (11), pp. 28822890.
    47. 47)
      • 16. Martin, D.R., Fowlkes, C.C., Malik, J.: ‘Learning to detect natural image boundaries using local brightness, color, and texture cues’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (5), pp. 530549.
    48. 48)
      • 59. De Valois, R.L., Albrecht, D.G., Thorell, L.G.: ‘Spatial frequency selectivity of cells in macaque visual cortex’, Vis. Res., 1982, 22, (5), pp. 545559.
    49. 49)
      • 30. Papari, G., Campisi, P., Petkov, N., et al: ‘A biologically motivated multiresolution approach to contour detection’, EURASIP J. Appl. Signal Process., 2007, 2007, (1), pp. 119119.
    50. 50)
      • 9. Kovesi, P.: ‘Image features from phase congruency’, J. Comput. Vis. Res., 1999, 1, (3), pp. 126.
    51. 51)
      • 15. Golberg, D.E.: ‘Genetic algorithms in search, optimization, and machine learning’, (Addion Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989, 1st edn.).
    52. 52)
      • 35. Sang, N., Tang, Q., Zhang, T.: ‘Contour detection based on inhibition of primary visual cortex’, Chin. J. Infrared Millim. Waves, 2007, 26, (1), p. 47.
    53. 53)
      • 22. Chao-Yi, L., Wu, L.: ‘Extensive integration field beyond the classical receptive field of cat's striate cortical neurons – classification and tuning properties’, Vis. Res., 1994, 34, (18), pp. 23372355.
    54. 54)
      • 61. Anand, A., Tripathy, S.S., Kumar, R.S.: ‘An improved edge detection using morphological Laplacian of Gaussian operator’. 2015 2nd Int. Conf. on Signal Processing and Integrated Networks (SPIN), Noida, India, 2015.
    55. 55)
      • 63. Knierim, J.J., Van Essen, D.C.: ‘Neuronal responses to static texture patterns in area V1 of the alert macaque monkey’, J. Neurophysiol., 1992, 67, (4), pp. 961980.
    56. 56)
      • 11. Haralick, R.M., Sternberg, S.R., Zhuang, X.: ‘Image analysis using mathematical morphology’, IEEE Trans. Pattern Anal. Mach. Intell., 1987, PAMI-9, (4), pp. 532550.
    57. 57)
      • 27. Petkov, N., Westenberg, M.A.: ‘Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition’, Biol. Cybern., 2003, 88, (3), pp. 236246.
    58. 58)
      • 17. Konishi, S., Yuille, A., Coughlan, J.: ‘A statistical approach to multi-scale edge detection’, Image Vis. Comput., 2003, 21, (1), pp. 3748.
    59. 59)
      • 1. Norman, J., Ehrlich, S.: ‘Visual accommodation and virtual image displays: target detection and recognition’, Hum. Factors, 1986, 28, (2), pp. 135151.
    60. 60)
      • 41. Tong, W.-S., Tang, C.-K.: ‘Robust estimation of adaptive tensors of curvature by tensor voting’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 434449.
    61. 61)
      • 34. Zhou, Z., Wang, B., Ma, J.: ‘Scale-aware edge-preserving image filtering via iterative global optimization’, IEEE Trans. Multimed., 2018, 20, (6), pp. 13921405.
    62. 62)
      • 19. Hubel, D.H., Wiesel, T.N.: ‘Receptive fields, binocular interaction and functional architecture in the cat's visual cortex’, J. Physiol., 1962, 160, (1), pp. 106154.
    63. 63)
      • 18. Konishi, S., Yuille, A.L., Coughlan, J.M., et al: ‘Statistical edge detection: learning and evaluating edge cues’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (1), pp. 5774.
    64. 64)
      • 50. Arbelaez, P., Maire, M., Fowlkes, C., et al: ‘Contour detection and hierarchical image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 898916.
    65. 65)
      • 2. Ma, J., Shao, W., Ye, H., et al: ‘Arbitrary-oriented scene text detection via rotation proposals’, IEEE Trans. Multimed., 2018, 20, (11), pp. 31113122.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0214
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading