http://iet.metastore.ingenta.com
1887

Segmentation-based recognition system for handwritten Bangla and Devanagari words using conventional classification and transfer learning

Segmentation-based recognition system for handwritten Bangla and Devanagari words using conventional classification and transfer learning

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Offline recognition of handwritten text in Indian regional scripts is a major area of research as nearly 910 million people use such scripts in India. Most of the reported research works on Indian script-based optical character recognition (OCR) system have focused on a single script only. Research for developing methodologies that are capable of handling more than one Indian script is yet to be focused. As such, this has motivated us to study and experiment on creating a recognition system that can handle two most popular Indian scripts, namely Bangla and Devanagari. The authors propose a system that first detects and corrects skew present in Bangla and Devanagari handwritten words, estimates the headline, and further segments the words into meaningful pseudo-characters. This is followed by extraction of three different statistical features and combination of these features with off-the-shelf classifiers to study and identify the exemplary combination. Moreover, they employ state-of-the-art convolutional neural network-based transfer learning architectures and delineate a comparison with the extracted hand-crafted features. Finally, they amalgamate the identified pseudo-characters to provide the final result. On experimentation, the proposed segmentation methodology is discerned to provide good accuracy when compared with existing methods.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0208
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0208
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address