access icon free Advanced lung cancer classification approach adopting modified graph clustering and whale optimisation-based feature selection technique accompanied by a hybrid ensemble classifier

Nowadays, lung cancer is the leading cause of cancer death in both men and women. The early detection of potentially cancerous cells is the best way to improve the patient's chances of survival. In the medical field, computed tomography (CT) is the best imaging technique and it is helpful for doctors to accurately find the cancerous cells. The authors propose an automatic approach to analyse and segment the lungs and classify each lung into normal or cancer. Initially, the CT lung image is pre-processed to remove noise. Then, they combine the histogram analysis with thresholding and morphological operations to segment and extract the lung regions. In feature extraction stage, the radiomic features of each lung image are extracted separately. Then to improve the classification accuracy, some of the optimum features are selected using modified graph clustering-based whale optimisation algorithm. Finally, the selected features are classified using ensemble classifiers such as support vector machine, K-nearest neighbour, and random forest. Experimental result demonstrates that the proposed method achieves better performance in terms of sensitivity, specificity, precision, recall, F-measure, and accuracy when compared with other state-of-art approaches.

Inspec keywords: feature extraction; optimisation; lung; support vector machines; image segmentation; pattern clustering; feature selection; medical image processing; nearest neighbour methods; cancer; computerised tomography; image classification; graph theory; random forests

Other keywords: morphological operations; modified graph clustering-based whale optimisation algorithm; cancerous cells; cancer death; K-nearest neighbour; whale optimisation-based feature selection technique; lung regions; radiomic features; imaging technique; computed tomography; noise removal; normal cancer; histogram analysis; medical field; classification accuracy; F-measure; support vector machine; feature extraction stage; optimum feature selection; thresholding operations; CT lung image; advanced lung cancer classification approach; random forest; hybrid ensemble classifier

Subjects: Optimisation techniques; Computer vision and image processing techniques; Data handling techniques; Combinatorial mathematics; Biology and medical computing; X-rays and particle beams (medical uses); Patient diagnostic methods and instrumentation; X-ray techniques: radiography and computed tomography (biomedical imaging/measurement); Image recognition; Combinatorial mathematics; Knowledge engineering techniques; Algebra, set theory, and graph theory; Optimisation techniques

References

    1. 1)
      • 37. Ghimatgar, H., Kazemi, K., Helfroush, M.S., et al: ‘An improved feature selection algorithm based on graph clustering and ant colony optimization’, Knowl.-Based Syst., 2018, 159, pp. 270285.
    2. 2)
      • 8. Watanabe, Y., Kusumoto, M., Yoshida, A., et al: ‘Surgically resected solitary cavitary lung adenocarcinoma: association between clinical, pathologic, and radiologic findings and prognosis’, Ann. Thorac. Surg., 2015, 99, (3), pp. 968974.
    3. 3)
      • 1. Diciotti, S., Lombardo, S., Falchini, M., et al: ‘Automated segmentation refinement of small lung nodules in CT scans by local shape analysis’, IEEE Trans. Biomed. Eng., 2011, 58, (12), pp. 34183428.
    4. 4)
      • 18. Arulmurugan, R., Anandakumar, H.: ‘Early detection of lung cancer using wavelet feature descriptor and feed forward back propagation neural networks classifier’, in ‘Computational vision and bio inspired computing’ (Springer, Cham, 2018), pp. 103110.
    5. 5)
      • 31. Koenderink, J.J., Van Doorn, A.J.: ‘Surface shape and curvature scales’, Image Vis. Comput., 1992, 10, (8), pp. 557564.
    6. 6)
      • 9. Choi, W.J., Choi, T.S.: ‘Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor’, Comput. Methods Programs Biomed., 2014, 113, (1), pp. 3754.
    7. 7)
      • 17. Yuan, J., Liu, X., Hou, F., et al: ‘Hybrid-feature-guided lung nodule type classification on CT images’, Comput. Graph., 2018, 70, pp. 288299.
    8. 8)
      • 15. Liu, X., Hou, F., Qin, H., et al: ‘Multi-view multi-scale CNNs for lung nodule type classification from CT images’, Pattern Recognit., 2018, 77, pp. 262275.
    9. 9)
      • 6. Gasinska, A., Kolodziejski, L., Niemiec, J., et al: ‘Clinical significance of biological differences between cavitated and solid form of squamous cell lung cancer’, Lung Cancer, 2005, 49, (2), pp. 171179.
    10. 10)
      • 39. Blondel, V.D., Guillaume, J.L., Lambiotte, R., et al: ‘Fast unfolding of communities in large networks’, J. Stat. Mech., Theory Exp., 2008, 2008, (10), p. P10008.
    11. 11)
      • 21. Dhalia Sweetlin, J., Nehemiah, H.K., Kannan, A.: ‘Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based feature selection’, Alexandria Eng. J., 2017, 57, (3), pp. 15571567.
    12. 12)
    13. 13)
      • 38. Moradi, P., Rostami, M.: ‘Integration of graph clustering with ant colony optimization for feature selection’, Knowl.-Based Syst., 2015, 84, pp. 144161.
    14. 14)
      • 35. Laws, K.I.: ‘Rapid texture identification’. 24th Annual Technical Symp., San Diego, United States, 1980, pp. 376382.
    15. 15)
      • 25. Fogel, I., Sagi, D.: ‘Gabor filters as texture discriminator’, Biol. Cybern., 1989, 61, (2), pp. 103113.
    16. 16)
      • 34. Amadasun, M., King, R.: ‘Textural features corresponding to textural properties’, IEEE Trans. Syst. Man Cybernet., 1989, 19, (5), pp. 12641274.
    17. 17)
      • 5. Lin, D.T., Yan, C.R., Chen, W.T.: ‘Autonomous detection of pulmonary nodules on CT images with a neural network-based fuzzy system’, Comput. Med. Imaging Graph., 2005, 29, (6), pp. 447458.
    18. 18)
      • 28. Miah, M.B.A., Yousuf, M.A: ‘Detection of lung cancer from CT image using image processing and neural network’. Int. Conf. on Electrical Engineering and Information Communication Technology, Dhaka, Bangladesh, 2015, pp. 16.
    19. 19)
      • 7. Pentheroudakis, G., Kostadima, L., Fountzilas, G., et al: ‘Cavitating squamous cell lung carcinoma-distinct entity or not?: analysis of radiologic, histologic, and clinical features’, Lung Cancer, 2004, 45, (3), pp. 349355.
    20. 20)
      • 33. Davis, L.S., Mitiche, A.: ‘Edge detection in textures – maxima selection’, Comput. Graph. Image Process., 1981, 16, (2), pp. 158165.
    21. 21)
      • 24. Dai, S., Lu, K., Dong, J., et al: ‘A novel approach of lung segmentation on chest CT images using graph cuts’, Neurocomputing, 2015, 168, pp. 799807.
    22. 22)
      • 10. Tiwari, A.: ‘Prediction of lung cancer using image processing techniques: a review’, Adv. Comput. Intell., Int. J. (ACII), 2016, 3, (1), pp. 19.
    23. 23)
      • 13. Makaju, S., Prasad, P.W.C., Alsadoon, A., et al: ‘Lung cancer detection using CT scan images’, Procedia Comput. Sci., 2018, 125, pp. 107114.
    24. 24)
      • 41. Kanjanatarakul, O., Kuson, S., Denoeux, T.: ‘An evidential K-nearest neighbor classifier based on contextual discounting and likelihood maximization’. Int. Conf. on Belief Functions, Compiègne, France, September 2018, pp. 155162.
    25. 25)
      • 16. Kuruvilla, J., Gunavathi, K.: ‘Lung cancer classification using neural networks for CT images’, Comput. Methods Programs Biomed., 2014, 113, (1), pp. 202209.
    26. 26)
      • 44. Zayed, N., Elnemr, H.A: ‘Statistical analysis of Haralick texture features to discriminate lung abnormalities’, J. Biomed. Imaging, 2015, 2015, p. 12.
    27. 27)
      • 23. Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al: ‘Radiomics: acting more information from medical images using advanced feature analysis’, Eur. J. Cancer, 2012, 48, (4), pp. 441446.
    28. 28)
      • 11. Zhao, X., Liu, L., Qi, S., et al: ‘Agile convolutional neural network for pulmonary nodule classification using CT images’, Int. J. Comput. Assist. Radiol. Surg., 2018, 13, (4), pp. 585595.
    29. 29)
      • 43. Kuruvilla, J., Gunavathi, K.: ‘Lung cancer classification using neural networks for CT images’, Comput. Methods Programs Biomed., 2014, 113, (1), pp. 202209.
    30. 30)
      • 3. Gierada, D.S., Pinsky, P.F., Duan, F., et al: ‘Interval lung cancer after a negative CT screening examination: CT findings and outcomes in national lung screening trial participants’, Eur. Radiol., 2017, 27, (8), pp. 32493256.
    31. 31)
      • 14. Tomizawa, K., Shimizu, S., Ohara, S., et al: ‘Clinical significance of tumor cavitation in surgically resected early-stage primary lung cancer’, Lung Cancer, 2017, 112, pp. 5761.
    32. 32)
      • 2. Parveen, S.S., Kavitha, C.: ‘Classification of lung cancer nodules using SVM kernels’, Int. J. Comput. Appl., 2014, 95, (25), pp. 2528.
    33. 33)
      • 36. Haralick, R.M., Shanmugam, K.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybernet., 1973, 6, pp. 610621.
    34. 34)
      • 4. MPrabukumar, M., Agilandeeswari, L., Ganesan, K.: ‘An intelligent lung cancer diagnosis system using cuckoo search optimization and support vector machine classifier’, J. Ambient Intell. Humaniz. Comput., 2017, 10, (1), pp. 267293.
    35. 35)
      • 29. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., et al: ‘Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach’, Nat. Commun., 2014, 5, p. 4006.
    36. 36)
    37. 37)
      • 12. Dhara, A.K., Mukhopadhyay, S., Dutta, A., et al: ‘A combination of shape and texture features for classification of pulmonary nodules in lung CT images’, J. Digit. Imaging, 2016, 29, (4), pp. 466475.
    38. 38)
      • 26. Wei, Q., Hu, Y.: ‘A hybrid approach to segmentation of diseased lung lobes’, IEEE. J. Biomed. Health. Inf., 2014, 18, (5), pp. 16961706.
    39. 39)
      • 30. Kumar, V., Gu, Y., Basu, S., et al: ‘Radiomics: the process and the challenges’, Magn. Reson. Imaging, 2012, 30, (9), pp. 12341248.
    40. 40)
      • 19. Masood, A., Sheng, B., Li, P., et al: ‘Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images’, J. Biomed. Inf., 2018, 79, pp. 117128.
    41. 41)
      • 27. Kharel, N., Alsadoon, A., Prasad, P.W.C., et al: ‘Early diagnosis of breast cancer using contrast limited adaptive histogram equalization (CLAHE) and morphology methods’. Information and Communication Systems (ICICS), Irbid, Jordan, 2017, pp. 120124.
    42. 42)
      • 32. Napel, S.A., Beaulieu, C.F., Rodriguez, C., et al: ‘Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results’, Radiology, 2010, 256, (1), pp. 243252.
    43. 43)
      • 42. Patel, R.K., Giri, V.K.: ‘Feature selection and classification of mechanical fault of an induction motor using random forest classifier’, Perspect. Sci., 2016, 8, pp. 334337.
    44. 44)
      • 40. Mafarja, M.M., Mirjalili, S.: ‘Hybrid whale optimization algorithm with simulated annealing for feature selection’, Neurocomputing, 2017, 260, pp. 302312.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0178
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading