access icon free Supervised fusion approach of local features extracted from SAR images for detecting deforestation changes

Deforestation has become a major problem consisting of a continuous regression of forested areas in the world, and for this purpose, an efficient detection of these changes has become more than necessary. In this work, a new method for deforestation change detection is proposed. This approach is based on a supervised fusion of local texture features extracted from SAR images. ALOS PALSAR (Advanced Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar) multi-temporal data have been used in this work. Normalised radar cross-section (NRCS) and polarimetric features extracted from HH and HV polarised data allowed recognising different categories of land covers termed as NRCS classification. Grey-level co-occurrence matrix (GLCM) texture features were extracted by using a different moving window sizes applied on local regions previously obtained by binarisation of the NRCS results. A total of 300 samples of regions and five GLCM characteristics have been used here. The detection of deforestation appears clearly in the resulted images with a very satisfactory precision of the reached regions, and the obtained results of the proposed supervised approach have indeed led to very good detection results of the deforestation change.

Inspec keywords: image texture; synthetic aperture radar; radar cross-sections; radar imaging; feature extraction; radar polarimetry; remote sensing by radar; geophysical image processing; image classification

Other keywords: continuous regression; NRCS results; NRCS classification; SAR images; Array type L-band Synthetic Aperture Radar; forested areas; local regions; Advanced Land Observation Satellite; different moving window; multitemporal data; supervised fusion approach; resulted images; local texture features; ALOS PALSAR; grey-level co-occurrence matrix texture features; polarimetric features; deforestation change detection; local features; good detection results; supervised approach

Subjects: Other topics in Earth sciences; Optical, image and video signal processing; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Radar equipment, systems and applications; Computer vision and image processing techniques; Geophysical techniques and equipment; Other topics in statistics; Other topics in statistics; Data and information; acquisition, processing, storage and dissemination in geophysics; Other topics in solid Earth physics

References

    1. 1)
      • 1. Asner, G.: ‘Cloud cover in landsat observations of the Brazilian’, Int. J. Remote Sens., 2001, 22, (18), pp. 38553862.
    2. 2)
      • 10. Ranson, K., Sun, G.: ‘An evaluation of AIRSAR and SIR-C/X SAR images for mapping northern forest attributes in main, USA’, Remote Sens. Environ., 1997, 59, (2), pp. 203222.
    3. 3)
      • 4. FRA.: ‘Global forest resource assessment country report’ (Cambodia, Rome, 2010).
    4. 4)
      • 5. Food and Agriculture Organisation: ‘Global Forest resources assessment’, FAO Forestry Paper 163, FAO, Rome, 2010.
    5. 5)
      • 38. Huang, C., Davis, L., Townshend, J.: ‘An assessment of support vector machines for land cover classification’, Remote Sens., 2002, 23, (4), pp. 725749.
    6. 6)
      • 23. Quegan, S., Toan, T., Skriver, H., et al: ‘Crop classification with multitemporal polarimetric SAR data’. Workshop on ‘POLinSAR’ Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, January 2003, pp. 3038.
    7. 7)
      • 15. Veraldo, L., Richard, G.: ‘Evaluating SAR polarization modes at L-band for forest classification purposes in eastern Amazon, Brazil’, Int. J. Appl. Earth Obs. Geoinf., 2013, 21, pp. 122135.
    8. 8)
      • 28. Na, L., Yang, L., Songlin, L., et al: ‘Port surveillance by using co-occurrence matrix on multi-temporal SAR images’. Proc. SPIE 9244, Image and Signal Processing for Remote Sensing, Amsterdam, Netherlands, October 2014.
    9. 9)
      • 17. Lee, J., Wen, J., Ainsworth, T., et al: ‘Improved Sigma filter for speckle filtering of SAR imagery’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (1), pp. 202213.
    10. 10)
      • 34. Milton, C., Diogenes, S., Corina Da Costa, F., et al: ‘Window size selection for texture image generation from SAR data: a case study for a Brazilian Amazon test site’. Proc. of the 2and Latino-American Seminar on Radar Remote Sensing, Santos, Sao Paulo, Brazil, September 1998, pp. 107115.
    11. 11)
      • 16. Attarchi, S., Richard, G.: ‘Classifying complex mountainous forests with L-band SAR and landsat data integration: a comparison among different machine learning methods in the Hyrcanian forest’, Remote Sens., 2014, 6, pp. 36243647.
    12. 12)
      • 8. Saatchi, S., Soares, J., Alves, D.: ‘Mapping Amazon deforestation and land use in Amazon rainforest by using SIR-C imagery’, Remote Sens. Environ., 1997, 59, (2), pp. 191202.
    13. 13)
      • 6. Rosenqvist, A., Shimada, M., Ito, N., et al: ‘ALOS/PALSAR: a pathfinder mission for global-scale monitoring of the environment’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (1), pp. 33073316.
    14. 14)
      • 9. Almeida-Filho, R., Rosenqvist, A., Shimabukuro, Y., et al: ‘Evaluation and perspectives of using multitemporal L-band SAR data to monitor deforestation in the Brazilian amazônia’, IEEE Geosci. Remote Sens. Lett., 2005, 2, (4), pp. 409412.
    15. 15)
      • 14. Sheldon, S., Xiangming, X., Chandrashekhar, B.: ‘Mapping evergreen forests in the Brazilian Amazon using MODIS and PALSAR 500-m mosaic imagery’, ISPRS J. Photogramm. Remote Sens., 2012, 74, pp. 3440.
    16. 16)
      • 2. Morel, A., Saatchi, S., Malhi, Y., et al: ‘Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian borneo using ALOS PALSAR data’, For. Ecol. Manag., 2011, 262, (9), pp. 17861798.
    17. 17)
      • 3. Carle, J., Holmgren, P.: ‘Wood from planted forests: A global outlook 2005–2030’, Forest Products J., 2008, 58, (12), pp. 68.
    18. 18)
      • 7. François, M.T.: ‘Is Brazil now in control of deforestation in the Amazon?’, Cybergeo: Eur. J. Geography, 2015, document 769, doi: 10.4000/cybergeo.27484.
    19. 19)
      • 26. Victor, K.: ‘Remote sensing of floods and flood-prone areas’, J. Coast. Res., 2015, 31, (4), pp. 10051013.
    20. 20)
      • 25. Brivio, P., Colombo, R., Maggi, R., et al: ‘Integration of remote sensing data and GIS for accurate mapping of flooded areas’, Int. J. Remote Sens., 2002, 23, (3), pp. 429441.
    21. 21)
      • 20. Lonnqvist, A., Rauste, Y., Molinier, M., et al: ‘Polarimetric SAR data in land cover mapping in boreal zone’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (10), pp. 36523662.
    22. 22)
      • 27. Na, L., Lorenzo, B., Zengping, C., et al: ‘A novel technique based on the combination of labeled co-occurrence matrix and variogram for the detection of built-up areas in high-resolution SAR images’, Remote Sens., 2014, 6, (5), pp. 38573878.
    23. 23)
      • 19. Luciano, B., Klaus, L., Alejandro, C.: ‘Bias correction for covariance parameters estimates in polarimetric SAR data models’. Image Proceeding Techniques: Proc. of the 2and Latino-American Seminar on Radar Remote Sensing, Santos, Sao Paulo, Brazil, September 1998, pp. 4548.
    24. 24)
      • 12. Simard, M., Saatchi, S., Grandi, G.: ‘The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest’, IEEE Trans. Geosci. Remote Sens., 2000, 38, (5), pp. 23102321.
    25. 25)
      • 32. Shijin, K., Dharun, V.: ‘Extraction of texture features using GLCM and shape features using connected regions’, Int. J. Eng. Technol., 2017, 8, (6), pp. 29262930.
    26. 26)
      • 11. Rignot, E., Salas, W., Skole, D.: ‘Mapping deforestation and secondary growth in rodonia, Brazil, using imaging radar and thematic mapper data’, Remote Sens. Environ., 1997, 59, (2), pp. 167179.
    27. 27)
      • 37. Luciana, O.P., Corina, C.F., Sidnei, J.S., et al: ‘Evaluation of optical and radar images integration methods for LULC classification in Amazon region’, IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., 2018, 11, (9), pp. 30623074.
    28. 28)
      • 13. Rahman, M., Sumantyo, J.: ‘ALOS PALSAR data for tropical forest interpretation and mapping’, ISPRS Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci., 2008, 37, (B7-1), pp. 185189.
    29. 29)
      • 22. Skriver, H., Dierking, W., Gudmandsen, P., et al: ‘Applications of synthetic aperture radar polarimetry’. Workshop on ‘POLinSAR’ Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, January 2003, pp. 1116.
    30. 30)
      • 21. Avtar, R., Takeuchi, W., Sawada, H.: ‘Full polarimetric PALSAR-based land cover monitoring in Cambodia for implementation of REDD policies’, Int. J. Digit. Earth, 2013, 6, (3), pp. 255275.
    31. 31)
      • 31. Sara, A., Richard, G.: ‘Classifying complex mountainous forests with l-band SAR and landsat data integration: a comparison among different machine learning methods in the hyrcanian forest’, Remote Sens., 2014, 6, (5), pp. 36243647.
    32. 32)
      • 35. Oliver, C., Quegan, S.: ‘Understanding synthetic aperture radar images’ (Artech House, Boston, 1988), p. 480.
    33. 33)
      • 33. Xin, Z., Jintian, C., Weisheng, W., et al: ‘A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm’, Sensors, MDPI, 2017, 17, (7), p. 1474.
    34. 34)
      • 36. Fernanda, S., Felix, C., Daniel, A., et al: ‘Spatial and temporal changes in the land use and cover of the paraíba valley in são paulo, Brazil: development of future scenarios’, Revista Brasileira de Geografia Física, 2018, 11, (5), pp. 17321747.
    35. 35)
      • 24. Buckley, J.: ‘Environmental change detection in prairie landscapes with simulated RADARSAT 2 imagery’. Proc. of the IEEE Int. Geoscience and Remote Sensing Symp. IGARSS, Toronto, Canada, June 2002, pp. 32553257.
    36. 36)
      • 30. Haralick, R., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621.
    37. 37)
      • 29. Sachin, K., Neha, M., Nidhi, A., et al: ‘Texture analysis and classification of polarimetric SAR images using histogram measures’. 2nd Int. Conf. on Signal Processing and Integrated Networks (SPIN), IEEE, Noida, India, February 2015, pp. 506511.
    38. 38)
      • 18. Shimada, M., Isoguchi, O., Tadono, T., et al: ‘PALSAR radiometric and geometric calibration’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (12), pp. 39153932.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0122
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0122
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading