access icon free Image compression system with an optimisation of compression ratio

The fundamental goal of image data compression is to set an optimal compression ratio while maintaining an acceptable reproduction quality. This study describes the principles of design of image compression system that automatically sets an optimal compression ratio for particular image content by identifying the image compression method while maintaining a tolerable reproduction quality. The proposed image compression system employs subjective and objective criteria for an assessment of the quality of the image compression system. The supervised artificial neural network is used to identify a compression method among different compression techniques by using subjective criterion. An objective criterion is used to determine an optimal compression ratio, which is calculated by using linear regression analysis that establishes analytical expression between a compression ratio, a property of an image and a reconstructed quality of an image. It was proved that the system is an effective tool for medical image compression applications.

Inspec keywords: neural nets; data compression; regression analysis; image reconstruction; medical image processing; image coding

Other keywords: objective criterion; subjective criterion; supervised artificial neural network; medical image compression applications; optimal compression ratio; image compression method; different compression techniques; tolerable reproduction quality; image compression system; particular image content; image data compression

Subjects: Biology and medical computing; Computer vision and image processing techniques; Image and video coding; Neural computing techniques

References

    1. 1)
      • 7. Bovik, A.: ‘Handbook of image and video processing’ (Academic Press, London, 2000).
    2. 2)
      • 8. Salomon, D.: ‘Data compression’ (Springer-Verlag, New York, 1998).
    3. 3)
      • 18. Tsai, D.Y., Lee, Y., Matsuyama, E.: ‘Information entropy measure for evaluation of image quality’, J. Digit. Imaging, 2008, 21, (3), pp. 338347.
    4. 4)
      • 9. Winkler, S.: ‘Digital video quality - vision models and metrics’ (John Wiley & Sons, Inc., Chichester, England, 2005).
    5. 5)
      • 12. Grgic, S., Grgic, M., Zovko-Cihlar, B.: ‘Performance analysis of image compression using wavelets’, IEEE Trans. Ind. Electron., 2001, 48, (3), pp. 682695.
    6. 6)
      • 11. Miyahara, M., Kotani, K., Algazi, V.: ‘Objective picture quality scale (PQS) for image coding’, IEEE Trans. Commun., 1998, 46, (9), pp. 12151226.
    7. 7)
      • 2. Ericson, B.: ‘Irreversible compression of medical images’, J. Digit. Imaging, 2002, 15, (1), pp. 414.
    8. 8)
      • 5. Chan, Y. T.: ‘Wavelet basics’ (Kluwer Academic Publishers, Norwell, MA, 1995).
    9. 9)
      • 4. Strang, G.: ‘The discrete cosine transform’, SIAM Rev., 1999, 41, (1), pp. 135147.
    10. 10)
      • 24. Khashman, A., Dimililer, K.: ‘Intelligent system for medical X-rays compression’, Trans. Mass-Data Anal. Images Signals Appl. Med. Biotechnol. Chem. Food Ind., 2009, 1, (1), pp. 314.
    11. 11)
      • 19. Ageenko, E., Franti, P.: ‘Context-based filtering of document images’, Pattern Recognit. Lett., 2000, 21, (6), pp. 483491.
    12. 12)
      • 23. Soliman, H.S., Omari, M.: ‘A neural networks approach to image compression’, Appl. Soft Comput., 2006, 6, (3), pp. 258271.
    13. 13)
      • 17. Peli, E.: ‘Contrast in complex images’, J. Opt. Soc. Am. A, 1990, 7, (10), pp. 20322040.
    14. 14)
      • 20. Wickerhauser, M.V.: ‘Adapted wavelet analysis from theory to software’ (A K Peters, Wellesley, MA, 1994).
    15. 15)
      • 13. Pandey, S.S., Singh, M.P., Pandey, V.: ‘Block wise image compression and reduced blocks artefacts using discrete cosine transform’, Int. J. Sci. Res. Publ., 2015, 5, (3), pp. 110.
    16. 16)
      • 14. Hassan, T.S.: ‘Image compression using discrete wavelet transform and discrete cosine transform’, J. Appl. Sci. Res., 2017, 13, (3), pp. 18.
    17. 17)
      • 6. Strang, G., Nguyen, T.: ‘Wavelets and filter banks’ (Wellesley- Cambridge Press, Wellesley, 1996).
    18. 18)
      • 27. Przelaskowski, A.: ‘Vector quality measure of lossy compressed medical images’, Comput. Biol. Med., 2004, 34, (3), pp. 193207.
    19. 19)
      • 29. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full image quality assessment algorithms’, IEEE Trans. Image Process., 2006, 15, (6), pp. 16801689.
    20. 20)
      • 3. Rao, K.R., Yip, P.: ‘Discrete cosine transform: algorithms, advantages, applications’ (Academic Press, London, 1990).
    21. 21)
      • 1. Cabral, J.E., Kim, Y.: ‘Multimedia systems for telemedicine and their communications requirements’, IEEE Commun. Mag., 1996, 34, (7), pp. 2027.
    22. 22)
      • 26. Khare, A., Tiwary, U.S.: ‘Soft-thresholding for denoising of medical images - a multiresolution approach’, Int. J. Wavelets Multiresolution, 2005, 3, (4), pp. 477496.
    23. 23)
      • 10. Sheikh, H.R., Bovik, A.C.: ‘Image information and visual quality’, IEEE Trans. Image Process., 2006, 15, (2), pp. 430444.
    24. 24)
      • 28. Avcibas, I., Sankur, B., Sayood, K.: ‘Statistical evaluation of image quality measures’, J. Electron. Imaging, 2002, 11, (2), pp. 201223.
    25. 25)
      • 15. Usevitch, B.: ‘A tutorial on modern lossy wavelet image compression: foundations of JPEG 2000’, IEEE Signal Proc. Mag., 2001, 18, (5), pp. 2235.
    26. 26)
      • 30. Lin, W., Kuo, C.: ‘Perceptual visual quality metrics: a survey’, J. Vis. Commun. Image R., 2011, 22, (4), pp. 297312.
    27. 27)
      • 25. Daubechies, I.: ‘Ten lectures on wavelets’ (SIAM, Philadelphia, PA, 1992).
    28. 28)
      • 16. Burger, W., Burge, M.J.: ‘Digital image processing’ (Springer-Verlag, New York, 2008).
    29. 29)
      • 22. Lo, S.C., Li, H., Freedman, M.T.: ‘Optimization of wavelet decomposition for image compression and feature preservation’, IEEE Trans. Med. Imaging, 2003, 22, (9), pp. 11411151.
    30. 30)
      • 21. Villasenor, J.D., Belzer, B., Liao, J.: ‘Wavelet filter evaluation for image compression’, IEEE Trans. Image Process., 1995, 4, (8), pp. 10531060.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0114
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading