http://iet.metastore.ingenta.com
1887

Modified clipping based image enhancement scheme using difference of histogram bins

Modified clipping based image enhancement scheme using difference of histogram bins

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an image enhancement algorithm based on the modified histogram clipping scheme using a difference of histogram bins (MCDHB) has been proposed. The core idea of the proposed method is to ascertain the difference between the number of pixels’ in histogram bins of an input image and that of the traditional histogram equalised (HE) image. The calculated difference of each bin is partitioned into different blocks based on range criteria. The proposed algorithm can be attested as a global HE approach and mainly focuses on maintaining peaks in the histogram. The proposed MCDHB framework provides a good trade-off among contrast enhancement, shape of histogram, detailed information, and natural colour. Furthermore, the MCDHB framework is also incorporated with gamma correction for further improvement. The subjective and objective assessment confirms that both the proposed techniques can efficiently enhance the images, in a better way than those produced by classical techniques.

References

    1. 1)
      • 1. Kim, Y.T.: ‘Contrast enhancement using brightness preserving bi-histogram equalization’, IEEE Trans. Consum. Electron., 1997, 43, pp. 18.
    2. 2)
      • 2. Wan, Y., Chen, Q., Zhang, B.: ‘Image enhancement based on equal area dualistic sub-image histogram equalization method’, IEEE Trans. Consum. Electron., 1999, 45, pp. 6875.
    3. 3)
      • 3. Chen, S.D., Ramli, A.R.: ‘Minimum mean brightness error bi-histogram equalization in contrast enhancement’, IEEE Trans. Consum. Electron., 2003, 49, (4), pp. 13101319.
    4. 4)
      • 4. Chen, S.D., Ramli, A.R.: ‘Contrast enhancement using recursive-mean-separate histogram equalization for scalable brightness preservation’, IEEE Trans. Consum. Electron., 2003, 49, (4), pp. 13011309.
    5. 5)
      • 5. Abdullah-Al-Wadud, M.: ‘A dynamic histogram equalization for image contrast enhancement’, IEEE Trans. Consum. Electron., 2007, 53, pp. 593600.
    6. 6)
      • 6. Ooi, C.H., Isa, N.A.M.: ‘Quadrants dynamic histogram equalization for contrast enhancement’, IEEE Trans. Consum. Electron., 2010, 56, pp. 25522559.
    7. 7)
      • 7. Singh, K., Kapoor, R.: ‘Image enhancement via median-mean based sub-image-clipped histogram equalization’, Optik, 2014, 125, pp. 46464651.
    8. 8)
      • 8. Zhang, L., Xu, Q., Zhu, G., et al: ‘Improved colour-to-grey method using image segmentation and colour difference model for colour vision deficiency’, IET Image Process., 2017, 12, (3), pp. 314319.
    9. 9)
      • 9. Singh, K., Kapoor, R., Sinha, S.K.: ‘Enhancement of low exposure images via recursive histogram equalization algorithms’, Optik, 2015, 126, pp. 26192625.
    10. 10)
      • 10. Santhi, K., Wahida Banu, R.S.D.: ‘Adaptive contrast enhancement using modified histogram equalization’, Optik, 2015, 126, pp. 18091814.
    11. 11)
      • 11. Tang, J.R., Isa, N. A.M.: ‘Bi-histogram equalization using modified histogram bins’, Appl. Soft Comput., 2017, 55, pp. 3143.
    12. 12)
      • 12. Liu, B., Jin, W., Chen, Y., et al: ‘Contrast enhancement using non-overlapped sub-blocks and local histogram projection’, IEEE Trans. Consum. Electron., 2011, 57, (2), pp. 583588.
    13. 13)
      • 13. Lai, Y.R., Tsai, P.C., Yao, C.Y., et al: ‘Improved local histogram equalization with gradient-based weighting process for edge preservation’, Multimed. Tools Appl., 2017, 76, pp. 15851613.
    14. 14)
      • 14. Ibrahim, H., Kong, N.S.P.: ‘Brightness preserving dynamic histogram equalization for image contrast enhancement’, IEEE Trans. Consum. Electron., 2007, 53, pp. 17521758.
    15. 15)
      • 15. Qadar, M.A., Zhaowen, Y., Rehman, A., et al: ‘Recursive weighted multi-plateau histogram equalization for image enhancement’, Optik, 2015, 126, pp. 58905898.
    16. 16)
      • 16. Kim, T., Paik, J.: ‘Adaptive contrast enhancement using gain-controllable clipped histogram equalization’, IEEE Trans. Consum. Electron., 2008, 54, (4), pp. 18031810.
    17. 17)
      • 17. Anand, S., Gayathri, S.: ‘Mammogram image enhancement by two-stage adaptive histogram equalization’, Optik, 2015, 126, pp. 31503152.
    18. 18)
      • 18. Chen, H., Ni, J., Hong, W., et alReversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering’, Signal Process. Image Commun., 2016, 46, pp. 116.
    19. 19)
      • 19. Xiao, Y., Cao, Z., Yuan, J.: ‘Entropic image thresholding based on GLGM histogram’, Pattern Recogn. Lett., 2014, 40, (15), pp. 4755.
    20. 20)
      • 20. Shanmugavadivu, P., Balasubramanian, K.: ‘Thresholded and optimized histogram equalization for contrast enhancement of images’, Comput. Electr. Eng., 2014, 40, pp. 757768.
    21. 21)
      • 21. Niu, Y., Wu, X., Shi, G.: ‘Image enhancement by entropy maximization and quantization resolution upconversion’, IEEE Trans. Image Process., 2016, 25, pp. 48154828.
    22. 22)
      • 22. Arici, T., Dikbas, S., Altunbasak, Y.: ‘A histogram modification framework and its application for image contrast enhancement’, IEEE Trans. Image Process., 2009, 18, (9), pp. 19211935.
    23. 23)
      • 23. Chen, Z., Abidi, B.R., Page, D.L., et al: ‘Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement-part I: the basic method’, IEEE Trans. Image Process., 2006, 15, (8), pp. 22902302.
    24. 24)
      • 24. Chen, Z., Abidi, B.R., Page, D.L., et al: ‘Gray-level grouping (GLG): an automatic method for optimized image contrast enhancement-part II: the variations’, IEEE Trans. Image Process., 2006, 15, (8), pp. 23032314.
    25. 25)
      • 25. Lee, C., Lee, C., Kim, C.S.: ‘Contrast enhancement based on layered difference representation of 2D histograms’, IEEE Trans. Image Process., 2013, 22, (12), pp. 53725384.
    26. 26)
      • 26. Kansal, S., Purwar, S., Tripathi, R.K.: ‘Image contrast enhancement using unsharp masking and histogram equalization’, Multimed. Tools Appl., 2018, 77, pp. 2691926938.
    27. 27)
      • 27. Sheet, D., Garud, H., Suveer, A., et al: ‘Brightness preserving dynamic fuzzy histogram equalization’, IEEE Trans. Consum. Electron., 2010, 56, pp. 24752480.
    28. 28)
      • 28. Duvar, R., Urhan, O.: ‘Fuzzy fusion based high dynamic range imaging using adaptive histogram separation’, IEEE Trans. Consum. Electron., 2015, 61, (1), pp. 119127.
    29. 29)
      • 29. Parihar, A.S., Verma, O.P., Khanna, C.: ‘Fuzzy-contextual contrast enhancement’, IEEE Trans. Image Process., 2017, 26, (4), pp. 18101819.
    30. 30)
      • 30. Deng, H., Sun, X., Liu, M., et al: ‘Image enhancement based on intuitionistic fuzzy sets theory’, IET Image Process., 2016, 10, (10), pp. 701709.
    31. 31)
      • 31. Parihar, A.S., Verma, O.P.: ‘Contrast enhancement using entropy-based dynamic sub-histogram equalisation’, IET Image Process., 2016, 10, (11), pp. 799808.
    32. 32)
      • 32. Paul, A., Bhattacharya, P., Maity, S.P., et al: ‘Plateau limit-based tri-histogram equalisation for image enhancement’, IET Image Process., 2018, 12, (9), pp. 16171625.
    33. 33)
      • 33. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice-Hall, Singapore, 2002, 2nd edn.).
    34. 34)
      • 34. Kong, N.S.P., Ibrahim, H., Ooi, C.H., et al: ‘Enhancement of microscopic images using modified self-adaptive plateau histogram equalization’. Proc. Int. Conf. on Computer Technology and Development, Kota Kinabalu, Malaysia, 2009, vol. 2, pp. 308310.
    35. 35)
      • 35. Fu, X., Liao, Y., Zeng, D., et al: ‘A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation’, IEEE Trans. Image Process., 2015, 24, (12), pp. 49654977.
    36. 36)
      • 36. Bhandari, A.K., Maurya, S., Meena, A.K.: ‘Social spider optimization based optimally weighted Otsu thresholding for image enhancement’, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2018, pp. 113.
    37. 37)
      • 37. Kandhway, P., Bhandari, A.K.: ‘A water cycle algorithm-based multilevel thresholding system for color image segmentation using masi entropy’, Circuits Syst. Signal Process., 2019, 38, (7), pp. 30583106.
    38. 38)
      • 38. Ancuti, C.O., Ancuti, C., Vleeschouwer, C.D., et al: ‘Color balance and fusion for underwater image enhancement’, IEEE Trans. Image Process., 2018, 27, (1), pp. 379393.
    39. 39)
      • 39. Gharbi, M., Chen, J., Barron, J.T., et al: ‘Deep bilateral learning for real-time image enhancement’, ACM Trans. Graphics, 2017, 36, (4), p. 118.
    40. 40)
      • 40. Panagiotakis, C., Kokinou, E., Sarris, A.: ‘Curvilinear structure enhancement and detection in geophysical images’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (6), pp. 20402048.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0111
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0111
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address