© The Institution of Engineering and Technology
In this study, a tomography reconstruction problem of binary images is considered on the isometric grid. On this grid, the triangle pixels have two types of orientations, accordingly, the authors call them delta or nabla shape pixels. The proposed reconstruction method uses data of projections of three natural directions. They are the lane directions of the triangular tessellation (these directions are somewhat analogous to row/column directions on the rectangular grids). The projection ray, penetrating through a grid lane, now not passing through the middle of pixels (i.e. through the middle line of triangle shape pixels), as usually taken, but little bit shifted from the middle parallel to the lane. This method provides the exact information about the number of nabla and delta shape triangle pixels in each lane of the image. This additional information is included in the reconstruction process to improve the quality of reconstruction. They formulate the suggested model into an energyminimisation problem and apply a gradientbased approach for its minimisation. They show and analyse various experimental results on test images. The presented approach shows both better quality reconstructions and shorter running time than the earlier approaches.
References


1)

1. Klette, R., Rosenfeld, A.: ‘Digital geometry. Geometric methods for digital picture analysis’ (Morgan Kaufmann Publishers, San Francisco, CA, Elsevier Science B.V., Amsterdam, 2004).

2)

2. Golay, M.J.E.: ‘Hexagonal parallel pattern transformations’, IEEE Trans. Comput., 1969, 18, pp. 733–740.

3)

3. Deutsch, E.S.: ‘Thinning algorithms on rectangular, hexagonal and triangular arrays’, Commun. ACM, 1972, 15, (3), pp. 827–837.

4)

4. Luczak, E., Rosenfeld, A.: ‘Distance on a hexagonal grid’, IEEE Trans. Comput., 1976, C25, (5), pp. 532–533.

5)

5. Lukić, T., Nagy, B.: ‘Energyminimization based discrete tomography reconstruction method for images on triangular grid’. Proc. of Combinatorial Image Analysis – 15th Int. Workshop (IWCIA), Austin (TX), USA, (, 7655), 2012, pp. 274–284.

6)

6. Moisi, E., Nagy, B., Cretu, V.: ‘Reconstruction of binary images represented on equilateral triangular grid using evolutionary algorithms’, Soft Comput. Appl., 2013, 195, pp. 561–571.

7)

7. Lukić, T., Nagy, B.: ‘Deterministic discrete tomography reconstruction by energy minimization method on the triangular grid’, Pattern Recognit. Lett., 2014, 49, pp. 11–16.

8)

8. Nagy, B., Lukić, T.: ‘Dense projection tomography on the triangular tiling’, Fundam. Inf., 2016, 145, pp. 125–141.

9)

9. Herman, G.T., Kuba, A.: ‘Discrete tomography: foundations, algorithms and applications’ (Birkhäuser, Boston, 1999).

10)

10. Herman, G.T, Kuba, A.: ‘Advances in discrete tomography and its applications’ (Birkhäuser, Boston, 2006).

11)

11. Gardner, R.J., Gritzmann, P.: ‘Uniqueness and complexity in discrete tomography’, in Herman, G.T., Kuba, A. (Eds.): ‘Discrete tomography: foundations, algorithms and applications’ (Birkhäuser, Boston, 1999), pp. 85–111.

12)

12. Kong, T.Y., Herman, G.T.: ‘Tomographic equivalence and switching operations’, in Herman, G.T., Kuba, A. (Eds.): ‘Discrete tomography: foundations, algorithms and applications’ (Birkhäuser, Boston, 1999), pp. 59–83.

13)

13. Lukić, T., Lukity, A.: ‘Binary tomography reconstruction algorithm based on the spectral projected gradient optimization’. Proc. of the 10th Int. Symp. of Hungarian Researchers on Computational Intelligence and Informatics (CINTI), Budapest, 2009, pp. 253–263.

14)

14. Lukić, T., Balázs, P.: ‘Binary tomography reconstruction based on shape orientation’, Pattern Recognit. Lett., 2016, 79, pp. 18–24.

15)

15. Weber, S., Nagy, A., Schüle, T., et al: ‘A benchmark evaluation of largescale optimization approaches to binary tomography’. Proc. of 13th Int. Conf. on Discrete Geometry for Computer Imagery (DGCI), Szeged, Hungary, (, 4245), 2006, pp. 146–156.

16)

16. Nagy, B.: ‘Shortest path in triangular grids with neighbourhood sequences’, J. Comput. Inf. Technol., 2003, 11, pp. 111–122.

17)

17. Nagy, B.: ‘A symmetric coordinate frame for hexagonal networks’. Proc. of the ISTCS'04 ACM Conf. Theoretical Computer Science, Ljubljana, Slovenia, 2004, pp. 193–196.

18)

18. Nagy, B.: ‘Isometric transformations of the dual of the hexagonal lattice’. Proc. of the ISPA'09, Salzburg, Austria, 2009, pp. 432–437.

19)

19. Nagy, B., Barczi, K.: ‘Isoperimetrically optimal polygons in the triangular grid’. Proc. of the IWCIA'11, Madrid, Spain, (, 6636), 2011, pp. 194–207.

20)

20. Nagy, B., Barczi, K.: ‘Isoperimetrically optimal polygons in the triangular grid with Jordantype neighbourhood on the boundary’, Int. J. Comput. Math., 2013, 90, pp. 1629–1652.

21)

21. Ryser, H.J.: ‘Combinatorial properties of matrices of zeros and ones’, Can. J. Math., 1957, 9, pp. 371–377.

22)

22. Gale, D.: ‘A theorem on flows in networks’, Pac. J. Math., 1957, 7, (2), pp. 1073–1082.

23)

23. Moisi, E., Nagy, B.: ‘Discrete tomography on the triangular grid: a memetic approach’. Proc. of 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik, Croatia, 2011, pp. 579–584.

24)

24. Schüle, T., Schnörr, C., Weber, S., et al: ‘Discrete tomography by convexconcave regularization and D.C. Programming’, Discrete Appl. Math., 2005, 151, pp. 229–243.

25)

25. Birgin, E.G., Martínez, J.M., Raydan, M.: ‘Algorithm 813: SPG – software for convexconstrained optimization’, ACM Trans. Math. Softw., 2001, 27, pp. 340–349.

26)

26. Birgin, E.G., Martínez, J.M.: ‘A boxconstrained optimization algorithm with negative curvature directions and spectral projected gradients’, Computing, 2001, 15, pp. 49–60.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietipr.2019.0099
Related content
content/journals/10.1049/ietipr.2019.0099
pub_keyword,iet_inspecKeyword,pub_concept
6
6