access icon free New strategy for CBIR by combining low-level visual features with a colour descriptor

In computer vision, the analysis of image contents plays a significant role to perform intelligent tasks such as object recognition and image retrieval. These contents can be low-level visual features or colour information within an image. For content-based image retrieval (CBIR), several methods have been proposed that focus on either low-level visual features extraction or the colour information, and very few works can be seen that retrieve the images by fusing both types of contents. Consequently, this work addresses the problem of combining low-level visual features with colour information that helps to improve the retrieval accuracy of CBIR. The proposed strategy extracts the low-level visual salient features with features from accelerated segment test feature descriptor and quantises the salient keypoints into a feature vector. The colour information of the image is extracted and segmented with non-linear L*a*b* colour space and quantised into a feature vector. The similarity for both the feature vectors including visual and colour features is computed and combined together. The top-rank images are retrieved for the obtained feature vector using the distance metric. The experimental results on two standard benchmark datasets show the improved efficiency and 85% accuracy of the proposed strategy over state-of-the-art methods.

Inspec keywords: image colour analysis; feature extraction; image segmentation; image retrieval; object recognition; content-based retrieval; computer vision; image representation; image matching

Other keywords: image contents; colour descriptor; colour information; visual colour features; content-based image retrieval; CBIR; accelerated segment test feature descriptor; low-level visual salient features; low-level visual features extraction; feature vector

Subjects: Image recognition; Optical, image and video signal processing; Information retrieval techniques; Computer vision and image processing techniques

References

    1. 1)
      • 36. Sedghi, T., Amirani, M.C., Fakheri, M., et al: ‘Framework for image retrieval using machine learning and statistical similarity matching techniques’, IET Image Process.., 2013, 7, (1), pp. 111.
    2. 2)
      • 6. Zhang, J., Feng, S., Li, D., et al: ‘Image retrieval using the extended salient region’, Inf. Sci., 2017, 399, pp. 154182.
    3. 3)
      • 30. Yang, J., Jiang, B., Li, B., et al: ‘A fast image retrieval method designed for network big data’, IEEE Trans. Ind. Inf., 2017, 13, (5), pp. 23502359.
    4. 4)
      • 28. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    5. 5)
      • 22. Liu, G.-H., Yang, J.-Y., Li, Z.: ‘Content-based image retrieval using computational visual attention model’, Pattern Recognit.., 2015, 48, (8), pp. 25542566.
    6. 6)
      • 26. Ho, T., Ly, N.: ‘A scene text-based image retrieval system’. 2012 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2012, Ho Chi Minh City, Vietnam, 2012, pp. 7984.
    7. 7)
      • 33. Torralba, A., Fergus, R., Weiss, Y.: ‘Small codes and large image databases for recognition’. 26th IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, Anchorage, USA, 2008.
    8. 8)
      • 17. Liu, P., Guo, J.M., Chamnongthai, K., et al: ‘Fusion of color histogram and LBP-based features for texture image retrieval and classification’, Inf. Sci., 2017, 390, pp. 95111.
    9. 9)
      • 40. Zafar, B., Ashraf, R., Ali, N., et al: ‘A novel discriminating and relative global spatial image representation with applications in CBIR’, Appl. Sci., 2018, 8, (11), pp. 123.
    10. 10)
      • 34. Rosten, E., Porter, R., Drummond, T.: ‘Faster and better: a machine learning approach to corner detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (1), pp. 105119.
    11. 11)
      • 14. Yu, S., Niu, D., Zhang, L., et al: ‘Colour image retrieval based on the hypergraph combined with a weighted adjacent structure’, IET Comput. Vis., 2018, 12, (5), pp. 563569.
    12. 12)
      • 12. Dash, J.K., Mukhopadhyay, S., Gupta, R.D.: ‘Content-based image retrieval using fuzzy class membership and rules based on classifier confidence’, IET Image Process.., 2015, 9, (9), pp. 836848.
    13. 13)
      • 39. Elalami, M.E.: ‘A new matching strategy for content based image retrieval system’, Appl. Soft Comput. J., 2014, 14, (PART C), pp. 407418.
    14. 14)
      • 37. Wang, J.Z., Li, J., Wiederhold, G.: ‘SIMPLIcity: semantics-sensitive integrated matching for picture libraries’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (9), pp. 947963.
    15. 15)
      • 42. Jhanwar, N., Chaudhuri, S., Seetharaman, G., et al: ‘Content based image retrieval using motif cooccurrence matrix’, Image Vis. Comput., 2004, 22, (14), pp. 12111220.
    16. 16)
      • 1. Reta, C., Solis-Moreno, I., Cantoral-Ceballos, J.A., et al: ‘Improving content-based image retrieval for heterogeneous datasets using histogram-based descriptorsMultimedia Tools Appl., 2018, 77, (7), pp. 81638193.
    17. 17)
      • 19. Husain, S.S., Bober, M.: ‘Improving large-scale image retrieval through robust aggregation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (9), pp. 17831796.
    18. 18)
      • 9. Jiang, F., Hu, H.M., Zheng, J., et al: ‘A hierarchal BoW for image retrieval by enhancing feature salience’, Neurocomputing, 2016, 175, (Part A), pp. 146154.
    19. 19)
      • 11. Alsmadi, M.K.: ‘An efficient similarity measure for content based image retrieval using memetic algorithm’, Egypt. J. Basic Appl. Sci., 2017, 4, (2), pp. 112122.
    20. 20)
      • 23. Karaoglu, S., Tao, R., Gevers, T., et al: ‘Words matter: scene text for image classification and retrieval’, IEEE Trans. Multimed., 2017, 19, (5), pp. 10631076.
    21. 21)
      • 27. Unar, S., Jalbani, A.H., Jawaid, M.M., et al: ‘Artificial Urdu text detection and localization from individual video frames’, Mehran Univ. Res. J. Eng. Technol., 2018, 37, (2), pp. 429438.
    22. 22)
      • 31. Bai, C., Chen, J., Huang, L., et al: ‘Saliency-based multi-feature modeling for semantic image retrieval’, J. Vis. Commun. Image Represent., 2018, 50, (November 2017), pp. 199204.
    23. 23)
      • 32. Yang, Z., Shen, D., Yap, P.T.: ‘Image mosaicking using SURF features of line segments’, PLoS One, 2017, 12, (3), pp. 115.
    24. 24)
      • 21. Wang, X., Wang, Z.: ‘A novel method for image retrieval based on structure elements’ descriptor’, J. Vis. Commun. Image Represent., 2013, 24, (1), pp. 6374.
    25. 25)
      • 3. Dimitrovski, I., Kocev, D., Loskovska, S., et al: ‘Improving bag-of-visual-words image retrieval with predictive clustering trees’, Inf. Sci., 2016, 329, pp. 851865.
    26. 26)
      • 4. Mishra, A., Alahari, K., Jawahar, C. V.: ‘Image retrieval using textual cues’. Proc. of the IEEE Int. Conf. on Computer Vision, Sydney, Australia, 2013, pp. 30403047.
    27. 27)
      • 25. Unar, S., Jalbani, A.H., Shaikh, M., et al: ‘A study on text detection and localization techniques for natural scene images’, Int. J. Comput. Sci. Netw. Secur., 2018, 18, (1), pp. 99111.
    28. 28)
      • 16. Lin, C.-H., Liu, C.-W., Chen, H.-Y.: ‘Image retrieval and classification using adaptive local binary patterns based on texture features’, IET Image Process.., 2012, 6, (7), p. 822.
    29. 29)
      • 15. Hemachandran, K., Paul, A., Singha, M.: ‘Content-based image retrieval using the combination of the fast wavelet transformation and the colour histogram’, IET Image Process.., 2012, 6, (9), pp. 12211226.
    30. 30)
      • 5. Unar, S., Wang, X., Zhang, C., et al: ‘Detected text-based image retrieval approach for textual images’, IET Image Process.., 2018, 13, (3), pp. 515521.
    31. 31)
      • 29. Bay, H., Ess, A., Tuytelaars, T., et al: ‘Speeded-up robust features (SURF)’, Comput. Vis. Image Underst., 2008, 110, (3), pp. 346359.
    32. 32)
      • 7. Iqbal, M., Naqvi, S.S., Browne, W.N., et al: ‘Learning feature fusion strategies for various image types to detect salient objects’, Pattern Recognit.., 2016, 60, pp. 106120.
    33. 33)
      • 43. Elalami, M.E.: ‘A novel image retrieval model based on the most relevant features’, Knowl.-Based Syst., 2011, 24, (1), pp. 2332.
    34. 34)
      • 35. Walia, E., Pal, A.: ‘Fusion framework for effective color image retrieval’, J. Vis. Commun. Image Represent., 2014, 25, (6), pp. 13351348.
    35. 35)
      • 41. Yu, J., Qin, Z., Wan, T., et al: ‘Feature integration analysis of bag-of-features model for image retrieval’, Neurocomputing, 2013, 120, pp. 355364.
    36. 36)
      • 20. Liu, G.-H., Yang, J.-Y.: ‘Content-based image retrieval using color difference histogram’, Pattern Recognit.., 2013, 46, (1), pp. 188198.
    37. 37)
      • 38. Nilsback, M.E., Zisserman, A.: ‘A visual vocabulary for flower classification’. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2006, 2, pp. 14471454.
    38. 38)
      • 8. Zhang, M., Zhang, K., Feng, Q., et al: ‘A novel image retrieval method based on hybrid information descriptors’, J. Vis. Commun. Image Represent., 2014, 25, (7), pp. 15741587.
    39. 39)
      • 18. Wang, Y., Cen, Y., Zhao, R., et al: ‘Separable vocabulary and feature fusion for image retrieval based on sparse representation’, Neurocomputing, 2017, 236, (July 2016), pp. 1422.
    40. 40)
      • 10. Feng, L., Wu, J., Liu, S., et al: ‘Global correlation descriptor: a novel image representation for image retrieval’, J. Vis. Commun. Image Represent., 2015, 33, pp. 104114.
    41. 41)
      • 24. Unar, S., Wang, X., Zhang, C.: ‘Visual and textual information fusion using kernel method for content based image retrieval’, Inf. Fusion, 2018, 44, (2), pp. 176187.
    42. 42)
      • 2. Fadaei, S., Amirfattahi, R., Ahmadzadeh, M.R.: ‘New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features’, IET Image Process.., 2017, 11, (2), pp. 8998.
    43. 43)
      • 13. Sana, J.K., Islam, M.M.: ‘PLT-based spectral features for texture image retrieval’, IET Image Process.., 2018, 12, (11), pp. 20652074.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0098
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0098
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading