access icon free Orthogonal sparse fractal coding algorithm based on image texture feature

Fractal image compression coding algorithm is a novel image compression technology; however, the long encoding time and unacceptable image reconstruction quality remain the primary obstacles in practical application. The purpose of this study is to improve the coding quality from the perspective of grey level transform and feature extraction. In this study, a novel orthogonal sparse fractal coding algorithm based on image texture feature is proposed. The authors define a normalised version as the new grey description feature of the image block so that two improved methods are scientifically combined in theory and algorithm. First, orthogonal sparse grey level transform based on sparse decomposition improves image reconstruction quality and decoding speed. Then, the similarity measure matrix, which stores the variance feature between range blocks and domain blocks, is used to reduce redundancies and encoding time. Simulation results show that the proposed algorithm in this study can obtain better image reconstruction quality and speed up encoding time significantly as compared to the conventional fractal coding schemes.

Inspec keywords: image reconstruction; decomposition; matrix algebra; data compression; fractals; orthogonal codes; image coding; image texture; feature extraction; transforms; image colour analysis

Other keywords: image reconstruction quality; image texture feature extraction; orthogonal sparse grey level; sparse decomposition; fractal image compression coding algorithm; orthogonal sparse grey level transform; orthogonal sparse fractal coding algorithm; decoding speed; grey description feature extraction

Subjects: Image recognition; Image and video coding; Computer vision and image processing techniques; Algebra; Integral transforms; Algebra; Integral transforms

References

    1. 1)
      • 5. Wee, Y., Shin, H.J.: ‘A novel fast fractal super resolution technique’, IEEE Trans. Consum. Electron., 2010, 56, (3), pp. 15371541.
    2. 2)
      • 4. Zhuang, Z.M., Lei, N.H., Joseph Raj, A.N., et al: ‘Application of fractal theory and fuzzy enhancement in ultrasound image segmentation’, Med. Biol. Eng. Comput., 2019, 57, (3), pp. 623632.
    3. 3)
      • 25. Mohimani, H., Babaie-Zadeh, M., Jutten, C.: ‘A fast approach for overcomplete sparse decomposition based on smoothed l0 norm’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 289301.
    4. 4)
      • 14. Jaferzadeh, K., Kiani, K., Mozaffari, S.: ‘Acceleration of fractal image compression using fuzzy clustering and discrete-cosine-transform-based metric’, IET Image Process., 2012, 6, (7), pp. 10241030.
    5. 5)
      • 37. Lee, C.K., Lee, W.K.: ‘Fast fractal image block coding based on local variances’, IEEE Trans. Image Process., 1998, 7, (6), pp. 888891.
    6. 6)
      • 9. Wang, X.Y., Li, F.P., Chen, Z.F.: ‘An improved fractal image coding method’, Fractals, 2009, 17, (4), pp. 451457.
    7. 7)
      • 32. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM Rev., 2001, 43, (1), pp. 129159.
    8. 8)
      • 26. Cheng, H., Liu, Z.C., Yang, L., et al: ‘Sparse representation and learning in visual recognition: theory and applications’, Signal Process., 2013, 93, (6), pp. 14081425.
    9. 9)
      • 29. Donoho, D.L., Elad, M., Temlyakov, V.N.: ‘Stable recovery of sparse overcomplete representations in the presence of noise’, IEEE Trans. Inf. Theory, 2006, 52, (1), pp. 618.
    10. 10)
      • 27. Zhang, Z., Xu, Y., Yang, J., et al: ‘A survey of sparse representation: algorithms and applications’, IEEE. Access., 2015, 3, pp. 490530.
    11. 11)
      • 28. Mallat, S.G., Zhang, Z.F.: ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process., 1993, 41, (12), pp. 33973415.
    12. 12)
      • 20. Moon, Y.H., Kim, H.S., Kim, J.H.: ‘A fast fractal decoding algorithm based on the selection of an initial image’, IEEE Trans. Image Process., 2000, 9, (5), pp. 941945.
    13. 13)
      • 7. Pi, M.H., Li, C.H., Li, H.: ‘A novel fractal image watermarking’, IEEE Trans. Multimed., 2006, 8, (3), pp. 488499.
    14. 14)
      • 30. Elad, M.: ‘Sparse and redundant representations’ (Springer, New York, 2010).
    15. 15)
      • 38. Huang, X.Q., Zhang, Q., Liu, W.B.: ‘A new method for image retrieval based on analyzing fractal coding characters’, J. Vis. Commun. Image Represent., 2013, 24, (1), pp. 4247.
    16. 16)
      • 31. Tibshirani, R.: ‘Regression shrinkage and selection via the lasso’, J. R. Stat. Soc., 1996, 58, (1), pp. 267288.
    17. 17)
      • 16. Wang, X.Y., Li, F.P., Wang, S.G.: ‘Fractal image compression based on spatial correlation and hybrid genetic algorithm’, J. Vis. Commun. Image Represent., 2009, 20, (8), pp. 505510.
    18. 18)
      • 13. Keyvan, J., Inkyu, M., Samaneh, G.: ‘Enhancing fractal image compression speed using local features for reducing search space’, Pattern Anal. Appl., 2017, 20, (4), pp. 11191128.
    19. 19)
      • 10. Truong, T.K., Kung, C.M., Jeng, J.H., et al: ‘Fast fractal image compression using spatial correlation’, Chaos Solitons Fractals, 2004, 22, (5), pp. 10711076.
    20. 20)
      • 6. Ghazel, M., Freeman, G.H., Vrscay, E.R.: ‘Fractal-wavelet image denoising revisited’, IEEE Trans. Image Process., 2006, 15, (9), pp. 26692675.
    21. 21)
      • 2. Jacquin, A.E.: ‘Image coding based on a fractal theory of iterated contractive image transform’, IEEE Trans. Image Process., 1992, 1, (1), pp. 1830.
    22. 22)
      • 22. Jacquin, A.E.: ‘Fractal image coding: a review’, Proc. IEEE, 1993, 81, (10), pp. 14511465.
    23. 23)
      • 17. Tseng, C.C., Hsieh, J.G., Jeng, J.H.: ‘Fractal image compression using visual-based particle swarm optimization’, Image Vis. Comput., 2008, 26, (8), pp. 11541162.
    24. 24)
      • 15. He, C.J., Xu, X.Z., Yang, J.: ‘Fast fractal image encoding using one-norm of normalised block’, Chaos Solitons Fractals, 2006, 27, (5), pp. 11781186.
    25. 25)
      • 8. Tan, T., Yan, H.: ‘The fractal neighbor distance measure’, Pattern Recognit., 2002, 35, (6), pp. 13711387.
    26. 26)
      • 11. Wang, X.Y., Wang, Y.X., Yun, J.J.: ‘An improved fast fractal image compression using spatial texture correlation’, Chin. Phys. B., 2011, 20, (10), pp. 228238.
    27. 27)
      • 12. Wang, J.J., Zheng, N.N.: ‘A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient’, IEEE Trans. Image Process., 2013, 22, (9), pp. 36903702.
    28. 28)
      • 23. Olshausen, B.A., Field, D.J.: ‘Emergence of simple-cell receptive field properties by learning a sparse code for natural images’, Nature, 1996, 381, (6583), pp. 607609.
    29. 29)
      • 33. Lee, H., Battle, A., Raina, R., et al: ‘Efficient sparse coding algorithms’. Proc. Int. Conf. Neural Information Processing Systems, Vancouver, Canada, December 2006, pp. 801808.
    30. 30)
      • 35. Wang, J.J., Chen, P., Xi, B., et al: ‘Fast sparse fractal image compression’, PLOS ONE, 2017, 12, (9), pp. 118.
    31. 31)
      • 36. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: ‘Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition’. Proc. 27th Annual Asilomar Conf. on Signals, Systems and Computers, California, America, November 1993, pp. 4044.
    32. 32)
      • 18. Fisher, Y.: ‘Fractal image compression: theory and applications’ (Springer-Verlag, Berlin, Germany, 1995).
    33. 33)
      • 39. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: ‘Kernel density estimation via diffusion’, Ann. Stat., 2010, 38, (5), pp. 29162957.
    34. 34)
      • 1. Barnsley, M.: ‘Fractal everywhere’ (Academic, New York, 1988).
    35. 35)
      • 21. Yuen, C.H., Lui, O.Y., Wong, K.W.: ‘Hybrid fractal image coding with quadtree-based progressive structure’, J. Vis. Commun. Image Represent., 2013, 24, (8), pp. 13281341.
    36. 36)
      • 24. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    37. 37)
      • 34. Wang, X.Y., Zhang, D.D., Guo, X.: ‘Novel hybrid fractal image encoding algorithm using standard deviation and DCT coefficients’, Nonlinear Dyn., 2013, 73, (1–2), pp. 347355.
    38. 38)
      • 40. Revathy, K., Jayamohan, M.: ‘Dynamic domain classification for fractal image compression’, Int. J. Comput. Sci. Inf. Technol., 2012, 4, (2), pp. 157166.
    39. 39)
      • 3. Pi, M., Li, H.: ‘Fractal indexing with the joint statistical properties and its application in texture image retrieval’, IET Image Process., 2008, 2, (4), pp. 218230.
    40. 40)
      • 19. Tong, C.S., Pi, M.: ‘Fast fractal image encoding based on adaptive search’, IEEE Trans. Image Process., 2001, 10, (9), pp. 12691277.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0085
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading