http://iet.metastore.ingenta.com
1887

Automated glaucoma detection using quasi-bivariate variational mode decomposition from fundus images

Automated glaucoma detection using quasi-bivariate variational mode decomposition from fundus images

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Glaucoma is a critical and irreversible neurodegenerative eye disorder caused by damaging optical nerve head due to increased intra-ocular pressure within the eye. Detection of glaucoma is a critical job for ophthalmologists. This study presents a novel and more accurate method for automated glaucoma detection using quasi-bivariate variational mode decomposition (QB-VMD) from digital fundus images. In total, 505 fundus images are decomposed using QB-VMD method which gives band limited sub-band images (SBIs) centred around a particular frequency. These SBIs are smooth and free from mode mixing problems. The glaucoma detection accuracy depends on the most useful features as it captured appropriate information. Seventy features are extracted from QB-VMD SBIs. Extracted features are normalised and selected using ReliefF method. Selected features are then fed to singular value decomposition to reduce their dimensionality. Finally, the reduced features are classified using least square support vector machine classifier. The obtained glaucoma detection accuracies are 85.94 and 86.13% using three- and ten-fold cross validation, respectively. Obtained results are better than the existing. It may become a suitable method for ophthalmologists to examine eye disease more accurately using fundus images.

References

    1. 1)
      • 1. Bock, R., Meier, J., Nyúl, L.G., et al: ‘Glaucoma risk index: automated glaucoma detection from color fundus images’, Med. Image Anal., 2010, 14, pp. 471481.
    2. 2)
      • 2. Tham, Y.C., Li, X., Wong, H.A., et al: ‘Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis’, Ophthalmology, 2014, 121, (11), pp. 20812090.
    3. 3)
      • 3. Types of Glaucoma-Glaucoma Research Foundation’. Available at https://www.glaucoma.org/glaucoma/types-of-glaucoma.php, accessed 27 November 2017.
    4. 4)
      • 4. Greaney, M.J., Hoffman, D.C., Garway-Heath, D.F., et al: ‘Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma’, Invest. Ophthalmol. Vis. Sci., 2002, 43, (1), pp. 140145.
    5. 5)
      • 5. Kavitha, S., Zebardast, N., Palaniswamy, K., et al: ‘Family history is a strong risk factor for prevalent angle closure in a south Indian population’, Ophthalmology, 2014, 121, (11), pp. 20912097.
    6. 6)
      • 6. Detecting Glaucoma-VisionAware’. Available at http://www.visionaware.org/info/your-eye-condition/glaucoma/detecting-glaucoma/125, accessed 27 December 2017.
    7. 7)
      • 7. Song, X.X., Song, K., Chen, Y.: ‘A computer-based diagnosis system for early glaucoma screening’. Proc. 27th Annual IEEE Engineering in Medicine and Biology, Shanghai, China, 2005, pp. 66086611.
    8. 8)
      • 8. Dua, S., Acharya, U.R., Chowriappa, P., et al: ‘Wavelet-based energy features for glaucomatous image classification’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (1), pp. 8087.
    9. 9)
      • 9. Lim, T.C., Chattopadhyay, S., Acharya, U.R.: ‘A survey and comparative study on the instruments for glaucoma detection’, Med. Eng. Phys., 2012, 34, (2), pp. 129139.
    10. 10)
      • 10. Hermann, M.M., David, F., Garway-Heath, D.F., et al: ‘Interobserver variability in confocal optic nerve analysis (HRT)’, Int. Ophthalmol., 2005, 26, (4), pp. 51435149.
    11. 11)
      • 11. Hagiwara, Y., Koh, J.E.W., Tan, J.H., et al: ‘Computer-aided diagnosis of glaucoma using fundus images: A review’, Comput. Methods Programs Biomed., 2018, 165, pp. 112.
    12. 12)
      • 12. Acharya, U.R., Mookiah, M.R.K., Koh, J.E.W., et al: ‘Automated diabetic macular edema (DME) grading system using DWT, DCT features and maculopathy index’, Comput. Biol. Med., 2017, 84, pp. 5968.
    13. 13)
      • 13. Ganesan, K., Martis, R., Acharya, U.R., et al: ‘Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images’, Med. Biol. Eng. Comput., 2014, 52, (8), pp. 663672.
    14. 14)
      • 14. Acharya, U.R., Mookiah, M.R.K., Koh, J.E.W., et al: ‘Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features’, Comput. Biol. Med., 2016, 73, pp. 131140.
    15. 15)
      • 15. Maheshwari, S., Pachori, R.B., Acharya, U.R.: ‘Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images’, IEEE J. Biomed. Health Inf., 2017, 21, (3), pp. 803813.
    16. 16)
      • 16. Maheshwari, S., Pachori, R.B., Kanhangad, V., et al: ‘Iterative variational mode decomposition based automated detection of glaucoma using fundus images’, Comput. Biol. Med., 2017, 88, pp. 142149.
    17. 17)
      • 17. Noronha, K.P., Acharya, U.R., Nayak, K.P., et al: ‘Automated classification of glaucoma stages using higher order cumulant features’, Biomed. Signal Process. Control, 2014, 10, pp. 174183.
    18. 18)
      • 18. Cheng, J., Liu, J., Xu, Y., et al: ‘Superpixel classification based optic disc and optic cup segmentation for glaucoma screening’, IEEE Trans. Med. Imaging, 2013, 32, (6), pp. 10191032.
    19. 19)
      • 19. Kolar, R., Jan, J.: ‘Detection of glaucomatous eye via color fundus images using fractal dimensions’, Radio Eng., 2008, 17, (3), pp. 109114.
    20. 20)
      • 20. Nyúl, L.G.: ‘Retinal image analysis for automated glaucoma risk evaluation’. Proc. SPIE 7497, MIPPR 2009: Medical Imaging, Parallel Processing of Images, and Optimization Techniques, Yichang, China, October 2009, vol. 7497, pp. 74971C-19, doi: 10.1117/12.851179.
    21. 21)
      • 21. Yadav, D., Sarathi, M.P., Dutta, M.K.: ‘Classification of glaucoma based on texture features using neural networks’. IEEE 7th Int. Conf. Contemporary Computing, Noida, India, 2014, pp. 109112.
    22. 22)
      • 22. Raja, C., Gangatharan, N.: ‘Glaucoma detection in fundal retinal images using trispectrum and complex wavelet based features’, Eur. J. Sci. Res., 2013, 97, (1), pp. 159171.
    23. 23)
      • 23. Raja, C., Gangatharan, N.: ‘Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnoses’, Int.J. Autom. Comput., 2015, 12, (4), pp. 393401, doi: 10.1007/s11633–014–0858–6.
    24. 24)
      • 24. Raja, C., Gangatharan, N.: ‘Optimal hyper analytic wavelet transform for glaucoma detection in fundal retinal images’, J. Electr. Eng. Technol., 2015, 10, (4), pp. 18991909.
    25. 25)
      • 25. Kavyashree, M., Rao, P.V.: ‘A novel approach on automatic detection of optic disc and optic cup segmentation’, ITSI Trans. Electr. Electron. Eng., 2016, 4, (2), pp. 23208945.
    26. 26)
      • 26. Kirar, B.S., Agrawal, D.K.: ‘Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images’, IET Image Process., 2019, 13, (1), pp. 7382, doi: 10.1049/iet-ipr.2018.5297.
    27. 27)
      • 27. Kirar, B.S., Agrawal, D.K.: ‘Glaucoma diagnosis using discrete wavelet transform and histogram features from fundus image’, Int. J. Eng. Technol., 2018, 7, (4), pp. 25462551, doi: 10.14419/ijet.v7i4.14809.
    28. 28)
      • 28. Huang, N.E., Long, S.R., Shen, Z., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. Lond., 1998, 454, pp. 903995.
    29. 29)
      • 29. Kirar, B.S., Agrawal, D.K.: ‘Empirical wavelet transform based pre-processing and entropy feature extraction from glaucomatous digital fundus images’. Int. Conf. Recent Innovations in Signal processing and Embedded Systems (RISE), India, October 2017, pp. 315319, doi: 10.1109/ RISE.2017.8378173.
    30. 30)
      • 30. Kirar, B.S., Agrawal, D.K.: ‘Comparison between empirical and variational mode decomposition based on percentage variation in entropy feature from glaucoma image’, Indian J. Public Health Res. Dev., 2017, 9, (9), pp. 1015, doi: 10.5958/0976-5506.2018.00960.9.
    31. 31)
      • 31. Wang, W., Pan, C., Wang, J.: ‘Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence’, Exp. Fluids, 2018, 59, (1), pp. 118.
    32. 32)
      • 32. Saki, F., Tahmasbi, A., Soltanian-Zadeh, H.S, et al: ‘Opposite weight learning rules with application in breast cancer diagnosis’, Comput. Biol. Med., 2013, 43, (1), pp. 3241.
    33. 33)
      • 33. Hu, M.K.: ‘Visual pattern recognition by moment invariants’, IRE Trans. Inf. Theory, 1962, 8, (2), pp. 179187.
    34. 34)
      • 34. Chip histogram’. Available at https://in.mathworks.com/matlabcentral/fileexchange/17537-histogram-features-of-a-gray-level-image?focused=5094859&tab=function, accessed 10 April 2017.
    35. 35)
      • 35. Zhang, Y., Lenan, W.: ‘An MR brain images classifier via principal component analysis and kernel support vector machine’, Prog. Electromagn. Res., 2012, 130, pp. 369388.
    36. 36)
      • 36. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, SMC-3, pp. 610621.
    37. 37)
      • 37. GLCM Features4’. Available at https://in.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m-with-codechanges-, accessed 10 November 2017.
    38. 38)
      • 38. Gray level run length matrix (GLRLM)’. Available at https://in.mathworks.com/matlabcentral/fileexchange/52640-gray-level-run-length-image-statistics, accessed 27 February 2018.
    39. 39)
      • 39. Kononenko, I.: ‘Estimating attributes: analysis and extensions of RELIEF’ (Springer Berlin Heidelberg, Berlin, Heidelberg, 1994), pp. 171182.
    40. 40)
      • 40. Stewart, G.W.: ‘On the early history of the singular value decomposition’, SIAM Rev., 1993, 35, (4), pp. 551566.
    41. 41)
      • 41. Suykens, J.A.K., Vandewalle, J.: ‘Least squares support vector machine classifiers’, Neural Process. Lett., 1999, 9, (3), pp. 293300.
    42. 42)
      • 42. Khandoker, A.H., Lai, D.T.H., Begg, R.K., et al: ‘Wavelet based feature extraction for support vector machines for screening balance impairments in the elderly’, IEEE Trans. Neural Syst. Rehabil. Eng., 2007, 15, (4), pp. 587597.
    43. 43)
      • 43. Rim-One-Medical Image Analysis Group’. Available at http://medimrg.webs.ull.es/, accessed 20 April 2017.
    44. 44)
      • 44. Yuan, F, Shi, J., Xia, X, et al: ‘Sub oriented histograms of local binary patterns for smoke detection and texture classification’, KSII Trans. Internet Inf. Syst., 2016, 10, (4), pp. 18071823.
    45. 45)
      • 45. Agrawal, D., Singhai, J.: ‘Multifocus image fusion using modified pulse coupled neural network for improved image quality’, IET Image Process., 2010, 4, (6), pp. 443451.
    46. 46)
      • 46. Zuiderveld, K.: ‘Contrast limited adaptive histograph equalization’, in ‘Graphic gems IV’ (Academic Press Professional, San Diego, 1994), pp. 474485.
    47. 47)
      • 47. Huang, T.S., Yang, G.J., Tang, G.Y.: ‘A fast two-dimensional median filtering algorithm’, IEEE Trans. Acoust. Speech Signal Process., 1979, 27, (1), pp. 1318.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2019.0036
Loading

Related content

content/journals/10.1049/iet-ipr.2019.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address