Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Applying maximally stable extremal regions and local binary patterns for guide-wire detecting in percutaneous coronary intervention

Intervention surgery strongly requires information on the guide-wire position under the monitoring of X-ray video. Hence, the related researches such as guide-wire detecting or tracking have become widespread. However, most of the existing methods require a lot of resources for computing or large data for training since the X-ray videos have internal physicals such as anatomical skeleton contours and organs that are quite similar to a guide-wire. This work presents a practical method that only requires a moderate number of training data for detecting a guide-wire tip in an X-ray video sequence during the percutaneous coronary intervention surgery. The method applies maximally stable extremal regions (MSER) combine with modified multi-filters (region area range filter and stroke width variation filter) for region detection and local binary patterns (LBP) for guide-wire recognition. The motivation for applying MSER and LBP are the robust efficacy and the low requirement of resources. The approach evaluated 20 different sequences of X-ray videos, a total of 1295 frames. 50 selected frames were used as training templates and others to experiment. The method was successfully performed to the detecting guide-wires with p-value < 0.01 compared with conventional MSER methods, 93.7% average detection accuracy, and 21 fps average speed.

References

    1. 1)
      • 25. Feng, Z., Bian, G., Xie, X., et al: ‘Design and evaluation of a bio-inspired robotic hand for percutaneous coronary intervention’. Proc. IEEE Int. Conf. Robotics and Automation (ICRA), Seattle, Washington, USA, May 2015, pp. 53385343.
    2. 2)
      • 21. Liao, R., Tan, Y., Sundar, H., et al: ‘An efficient graph-based deformable 2D/3D registration algorithm with applications for abdominal aortic aneurysm interventions’. Int. Workshop on Medical Imaging and Virtual Reality, Beijing, China, 2010, pp. 561570.
    3. 3)
      • 11. Honnorat, N., Vaillant, R., Paragios, N.: ‘Graph-based guide-wire segmentation through fusion of contrast-enhanced and fluoroscopic images’. Proc. 9th IEEE Int. Symp. Biomedical Imaging (ISBI), Barcelona, Spain, May 2012, pp. 948951.
    4. 4)
      • 8. Fazlali, H.R., Karimi, N., Soroushmehr, S.M.R., et al: ‘Vessel region detection in coronary X-ray angiograms’. Proc. IEEE Int. Conf. Image Processing (ICIP), Québec, Canada, September 2015, pp. 14931497.
    5. 5)
      • 17. Xu, R., Athavale, P., Nachman, A., et al: ‘Multiscale registration of real-time and prior MRI data for image-guided cardiac interventions’, IEEE Trans. Biomed. Eng., 2014, 61, (10), pp. 26212632.
    6. 6)
      • 16. Baka, N., Metz, C., Schultz, C.J., et al: ‘Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration’, IEEE Trans. Med. Imaging, 2014, 33, (5), pp. 10231034.
    7. 7)
      • 14. Alderliesten, T., Konings, M.K., Niessen, W.J.: ‘Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions’, IEEE Trans. Biomed. Eng., 2007, 54, (1), pp. 2938.
    8. 8)
      • 30. Bradley, D., Roth, G.: ‘Adaptive thresholding using the integral image’, J. Graph. Tools, 2007, 12, (2), pp. 1321.
    9. 9)
      • 23. Ambrosini, P., Ruijters, D., Niessen, W.J., et al: ‘Fully automatic and real-time catheter segmentation in X-ray fluoroscopy’. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Quebec City, Canada, 2017, pp. 577585.
    10. 10)
      • 2. Bovet, P., Burnier, M., Madeleine, G., et al: ‘Monitoring one-year compliance to antihypertension medication in the Seychelles’, Bull. WHO, 2002, 80, pp. 3339.
    11. 11)
      • 27. Wang, Z., Mo, H., Wang, H., et al: ‘An affine invariant feature detection method based on sift and mser’. Proc. 7th IEEE Conf. Industrial Electronics and Applications (ICIEA), Singapore, July 2012, pp. 6972.
    12. 12)
      • 18. Van der Bom, I., Klein, S., Staring, M., et al: ‘Evaluation of optimization methods for intensity-based 2D-3D registration in X-ray guided interventions’. Medical Imaging 2011: Image Processing, Florida, USA, 2011, vol. 7962, p. 796223.
    13. 13)
      • 10. Heibela, T.H., Glockera, B., Grohera, M., et al: ‘Discrete tracking of parametrized curves’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, Florida, USA, June 2009, pp. 17541761.
    14. 14)
      • 20. Groher, M., Zikic, D., Navab, N.: ‘Deformable 2D-3D registration of vascular structures in a one view scenario’, IEEE Trans. Med. Imaging, 2009, 28, (6), pp. 847860.
    15. 15)
      • 29. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    16. 16)
      • 19. Mitroviäğ, U., Sëÿpiclin, Z., Likar, B., et al: ‘3D-2D registration of cerebral angiograms: A method and evaluation on clinical images’, IEEE Trans. Med. Imaging, 2013, 32, (8), pp. 15501563.
    17. 17)
      • 28. Wang, L., Xie, X., Gao, Z., et al: ‘Guide-wire detecting using a modified cascade classifier in interventional radiology’. Proc. 38th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), Florida, USA, August 2016, pp. 12401243.
    18. 18)
      • 22. Ambrosini, P., Smal, I., Ruijters, D., et al: ‘A hidden Markov model for 3D catheter tip tracking with 2D X-ray catheterization sequence and 3D rotational angiography’, IEEE Trans. Med. Imaging, 2017, 36, (3), pp. 757768.
    19. 19)
      • 4. Wang, C., Wang, W.: ‘A method for guide wire tracking in X-ray angiographic images based on open active contours’. Proc. IEEE 13th Int. Conf. Signal Processing (ICSP), Búzios, Brazil, November 2016, pp. 624627.
    20. 20)
      • 15. Ferrante, E., Paragios, N.: ‘Non-rigid 2D-3D medical image registration using markov random fields’. Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 2013, pp. 163170.
    21. 21)
      • 26. Matas, J., Chum, O., Urban, M., et al: ‘Robust wide-baseline stereo from maximally stable extremal regions’, Image Vis. Comput., 2004, 22, (10), pp. 761767.
    22. 22)
      • 3. Wang, H., Tian, H., Guo, H., et al: ‘Design of propulsion mechanism for vascular interventional operation robot’. Proc. Int. Conf. Advanced Mechatronic Systems (ICAMechS), Zhengzhou, China, Aug. 2018, pp. 172177.
    23. 23)
      • 7. Hernandez-Vela, A., Gatta, C., Escalera, S., et al: ‘Accurate coronary centerline extraction, caliber estimation, and catheter detection in angiographies’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (6), pp. 13321340.
    24. 24)
      • 9. Chang, P., Rolls, A., Praetere, H.D., et al: ‘Robust catheter and guidewire tracking using b-spline tube model and pixel-wise posteriors’, IEEE Robot. Autom. Lett., 2016, 1, (1), pp. 303308.
    25. 25)
      • 32. Li, Y., Lu, H.: ‘Scene text detection via stroke width’. Proc. 21st Int. Conf. Pattern Recognition (ICPR2012), Tsukuba Science City, Japan, November 2012, pp. 681684.
    26. 26)
      • 31. Mikolajczyk, K., Tuytelaars, T., Schmid, C., et al: ‘A comparison of affine region detectors’, Int. J. Comput. Vis., 2005, 65, (1–2), pp. 4372.
    27. 27)
      • 1. World Health Organization: ‘Cardiovascular diseases’, 2018. Available at http://www.who.int.
    28. 28)
      • 13. Liao, R., Zhang, L., Sun, Y., et al: ‘A review of recent advances in registration techniques applied to minimally invasive therapy’, IEEE Trans. Multimed., 2013, 15, (5), pp. 9831000.
    29. 29)
      • 6. Heibel, H., Glocker, B., Groher, M., et al: ‘Interventional tool tracking using discrete optimization’, IEEE Trans. Med. Imaging, 2013, 32, (3), pp. 544555.
    30. 30)
      • 24. Wang, L., Xie, X., Bian, G., et al: ‘Guide-wire detection using region proposal network for X-ray image-guided navigation’. Proc. Int. Joint Conf. Neural Networks (IJCNN), May 2017, pp. 31693175.
    31. 31)
      • 5. Wang, W., Li, S., Qin, H., et al: ‘Novel, robust, and efficient guidewire modeling for PCI surgery simulator based on heterogeneous and integrated chainmails’. Proc. 14th Int. Conf. Computer-aided Design and Computer Graphics (CAD/Graphics), Xi'an, China, August 2015, pp. 105112.
    32. 32)
      • 12. Krieger, A., Iordachita, I.I., Guion, P., et al: ‘An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention’, IEEE Trans. Biomed. Eng., 2011, 58, (11), pp. 30493060.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6652
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6652
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address