http://iet.metastore.ingenta.com
1887

Edge detection of retinal OCT image based on complex shearlet transform

Edge detection of retinal OCT image based on complex shearlet transform

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Aiming at the problem that optical coherence tomography (OCT) images with low contrast and layer structure blur are difficult to be automatically layered, a new OCT detection method based on complex shearlet transform is proposed. The method utilises nearly optimal sparse approximation singular curves of multi-scale shearlet transform, and the contrast invariance of the phase congruence method. Compared with the Canny edge detector and wavelet methods, the complex shearlet-based method achieved the highest Pratt figure of merit (PFOM) value. The PFOM value of a step type edge is 0.92, and that of a pulse type edge is 0.98. Three types of OCT images were tested, including normal retinal macula area, dry age-related macular degeneration, and Stargardt disease. The experimental results show that the complex shearlet-based method can detect more layered structures of OCT images, especially the boundary between the ganglion cell layer and the inner plexiform layer that is difficult to detect, and it can detect various types of OCT images. The complex shearlet-based transform method provides an effective and general way to measure retinal OCT images.

References

    1. 1)
      • 1. Liu, Y., Liu, H.: ‘Clinical application progress of OCT scan in ophthalmology’, Med. Recapitulate, 2007, 13, (24), pp. 20142016.
    2. 2)
      • 2. Jiang, Y., Zhou, C., Ren, Q.: ‘Retinal image segmentation with optical coherence tomography’, Beijing Biomed. Eng., 2011, 30, (5), pp. 452456.
    3. 3)
      • 3. Baroni, M., Fortunato, P., Torre, A.L.: ‘Towards quantitative analysis of retinal features in optical coherence tomography’, Med. Eng. Phys., 2007, 29, (4), pp. 432441.
    4. 4)
      • 4. Cabrera, D.F., Salinas, H.M., Puliafito, C.A.: ‘Automated detection of retinal layer structures on optical coherence tomography images’, Opt. Express, 2005, 13, (25), pp. 1020010216.
    5. 5)
      • 5. Fabritius, T., Makita, S., Miura, M., et al: ‘Automated segmentation of the macula by optical coherence tomography’, Opt. Express, 2009, 17, (18), pp. 1565915669.
    6. 6)
      • 6. Vedran, K., Považay, B., Herman, B., et al: ‘Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis’, Opt. Express, 2010, 18, (14), p. 14730.
    7. 7)
      • 7. Xu, Q., Chang, Y., Li, W.B., et al: ‘A segmentation algorithm of OCT image based on region growth’, Inf. Technol., 2013, 4, pp. 136140.
    8. 8)
      • 8. Mishra, A., Wong, A., Bizheva, K., et al: ‘Intra-retinal layer segmentation in optical coherence tomography images’, Opt. Express, 2009, 17, (26), pp. 2371923728.
    9. 9)
      • 9. Garvin M, K., Abrà moff, M.D., Wu, X., et al: ‘Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images’, IEEE Trans. Med. Imaging, 2009, 28, (9), pp. 14361447.
    10. 10)
      • 10. Slonczewski, J.C.: ‘Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation’, Opt. Express, 2010, 18, (18), pp. 1941319428.
    11. 11)
      • 11. Chen, Q., Xu, J., Niu, S.: ‘Retinal nerve fiber layer segmentation of spectral domain optical’, J. Electron. Inf. Technol., 2017, 39, (5), pp. 11011108.
    12. 12)
      • 12. He, Q., Li, Z., Wang, X.: ‘Automated retinal layer segmentation based on optical coherence tomographic images’, Acta Opt. Sin., 2016, 36, (10), pp. 7180.
    13. 13)
      • 13. Antony, B.J., Prince, J.L.: ‘Simultaneous segmentation of retinal surfaces and microcystic macular edema in SDOCT volumes’. Proc. of SPIE--the Int. Society for Optical Engineering, 2016, vol. 9784, p. 97841.
    14. 14)
      • 14. Fang, L., Cunefare, D., Wang, C., et al: ‘Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search’, Biomed. Opt. Express, 2017, 8, (5), p. 2732.
    15. 15)
      • 15. Jared, H., Alonso-Caneiro, D., Scott, A., et al: ‘Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers’, Biomed. Opt. Express, 2018, 9, (7), p. 3049.
    16. 16)
      • 16. Kai, Y., Fei, S., Enting, G., et al: ‘Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation’, Biomed. Opt. Express, 2018, 9, (3), p. 962.
    17. 17)
      • 17. Chi, J.: ‘Visual measurement technology’ (Mechanical Industry Press, Beijing, 2011).
    18. 18)
      • 18. Mallat, S., Zhong, S.: ‘Characterization of signals from multiscale edges’, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, (7), pp. 710732.
    19. 19)
      • 19. Mallat, S., Huang, W.L.: ‘Singularity detection and processing with wavelet’, IEEE Trans. Inf. Theory, 1992, 38, (2), pp. 617643.
    20. 20)
      • 20. Yi-Han, X., Zhi-Hong, X.I., Tao, H., et al: ‘Image edge detection based on nonsubsampled contourlet transform’, Syst. Eng. Electron., 2011, 33, (7), pp. 16681672.
    21. 21)
      • 21. Zhang, Y.-T., Yin, Z.-K., Wang, J.-Y.: ‘A new image edge detection scheme’, J. Electron. Inf. Technol., 2008, 30, (6), pp. 12951299.
    22. 22)
      • 22. Ma, S.F., Zheng, G.F., Jin, L.X., et al: ‘Directional multiscale edge detection using the contourlet transform’. 2010 2nd Int. Conf. on Advanced Computer Control IEEE, New York, NY, USA, 2010.
    23. 23)
      • 23. Yi, S., Labate, D., Easley, G.R., et al: ‘A shearlet approach to edge analysis and detection’, IEEE Trans. Image Process., 2009, 18, (5), p. 929.
    24. 24)
      • 24. Emily, J.K., Rafael, R., Johannes, K., et al: ‘Shearlet-based edge detection: flame fronts and tidal flats’. Appl. Digit. Image Process. XXXVIII, SPIE, San Diego, CA, USA, 2015, 9699.
    25. 25)
      • 25. Reisenhofer, R., Kiefer, J., King, E.J.: ‘Shearlet-Based detection of flame fronts’, Exp. Fluids, 2016, 57, (3), pp. 114.
    26. 26)
      • 26. Rafael, R.: ‘The Complex shearlet transform and applications to image quality assessment’. Master thesis, Technische Universitat Berlin, 2014.
    27. 27)
      • 27. Easley, G.R., Labate, D., Lim, W.Q.: ‘Optimally sparse image representations using shearlets’, Wavelets XI, 2005, 5914, (1), pp. 974978.
    28. 28)
      • 28. Easley, G., Labate, D., Lim, W.Q.: ‘Sparse directional image representations using the discrete shearlet transform’, Appl. Comput. Harmonic Analysis, 2008, 25, (1), pp. 2546.
    29. 29)
      • 29. Kutyniok, G., Lim, W.Q., Reisenhofer, R.: ‘Shearlab 3D: faithful digital shearlet transforms based on compactly supported shearlets’, ACM Trans. Math. Softw., 2016, 42, (1), pp. 142.
    30. 30)
      • 30. Morrone, M.C., Owens, R.A.: ‘Feature detection from local energy’, Pattern Recognit. Lett., 1987, 6, (5), pp. 303313.
    31. 31)
      • 31. Kovesi, P.: ‘Image features from phase congruency’, J. Comput. Vis. Pattern Recogn., 1999, 1, (3), pp. 126.
    32. 32)
      • 32. Xu, C., Shi, Q., Cheng, M.: ‘Zero-symmetrical and zero-antisymmetrical dyadic wavelet and its application to edge detection’, China J. Image Graph., 1996, 1, (1), pp. 411.
    33. 33)
      • 33. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), p. 2080.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6634
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6634
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address