access icon free Texture and colour region separation based image retrieval using probability annular histogram and weighted similarity matching scheme

Content-based image retrieval (CBIR) uses primitive image features for retrieval of similar images from a dataset. Generally, researchers extract these visual features from the whole image. Therefore, the extracted features contain overlapped information of texture, colour, and shape features, and it is a critical challenge in the field of CBIR. This problem can be overcome by extracting the colour features from the colour as well as shape and texture features from the intensity dominant part only. In this study, the authors have proposed an iterative algorithm to separate colour and texture dominant part of the image into two different images. Here, a combination of edge maps and gradients has been used to achieve separate colour and texture images. Further, scale-invariant feature transform and 2D dual-tree complex wavelet transform has been realised to extract unique shape and texture features from the texture image. Simultaneously, a probability-based semantic centred annular histogram has been suggested to extract unique colour features from the colour image. Finally, a novel weighted distance-based feature comparison scheme has been proposed for similarity matching and retrieval. All the image retrieval experiments have been carried out on seven standard datasets and demonstrated significant improvements over other state-of-arts CBIR systems

Inspec keywords: probability; iterative methods; feature extraction; image matching; image texture; content-based retrieval; shape recognition; wavelet transforms; trees (mathematics); image retrieval; edge detection; image colour analysis

Other keywords: colour region separation based image retrieval; probability-based semantic centred annular histogram; weighted distance-based feature comparison scheme; unique shape feature extraction; query image; unique colour features; texture image datasets; scale-invariant feature transform; texture feature; edge maps; texture dominant part; database images; weighted similarity matching scheme; retrieval performances; image retrieval experiments; primitive image visual features; two-dimensional dual-tree complex wavelet transform; colour dominant part; intensity dominant part; content-based image retrieval system; iterative algorithm; shape feature similarities; CBIR

Subjects: Combinatorial mathematics; Other topics in statistics; Computer vision and image processing techniques; Image recognition; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Integral transforms in numerical analysis; Combinatorial mathematics; Other topics in statistics; Integral transforms in numerical analysis; Information retrieval techniques

References

    1. 1)
      • 28. Wang, X.Y., Wang, Y.X., Yun, J.J.: ‘An improved no-search fractal image coding method based on a fitting plane’, Image Vis. Comput., 2010, 28, (8), pp. 13031308.
    2. 2)
      • 1. Gong, Y., Zhang, H., Chuan, H.C., et al: ‘An image database system with content capturing and fast image indexing abilities’. 1994 Proc. of IEEE Int. Conf. on Multimedia Computing and Systems, Boston, USA, 1994, pp. 121130.
    3. 3)
      • 14. Singha, M., Hemachandran, K., Paul, A.: ‘Content-based image retrieval using the combination of the fast wavelet transformation and the colour histogram’, IET Image Process., 2012, 6, (9), pp. 12211226.
    4. 4)
      • 12. Amanatiadis, A., Kaburlasos, V., Gasteratos, A., et al: ‘Evaluation of shape descriptors for shape-based image retrieval’, IET Image Process., 2011, 5, (5), pp. 493499.
    5. 5)
      • 24. Liu, P., Guo, J.M., Wu, C.Y., et al: ‘Fusion of deep learning and compressed domain features for content-based image retrieval’, IEEE Trans. Image Process., 2017, 26, (12), pp. 57065717.
    6. 6)
      • 39. Liu, G.H., Yang, J.Y., Li, Z.: ‘Content-based image retrieval using computational visual attention model’, Pattern Recognit., 2015, 48, (8), pp. 25542566.
    7. 7)
      • 32. Lowe, D.G: ‘Object recognition from local scale-invariant features’. The Proc. of the Seventh IEEE Int. Conf. on Computer Vision, 1999, Corfu, Greece, 1999, vol. 2, pp. 11501157.
    8. 8)
      • 23. dos Santos, J.M., de Moura, E.S., da Silva, A.S., et al: ‘Color and texture applied to a signature-based bag of visual words method for image retrieval’, Multimedia Tools Appl., 2017, 76, (15), pp. 1685516872. Available at https://doi.org/10.1007/s11042-016-3955-4.
    9. 9)
      • 18. Pradhan, J., Pal, A.K., Banka, H.: ‘Principal texture direction based block level image reordering and use of color edge features for application of object based image retrieval’, Multimedia Tools Appl., 2018, 82, pp. 133.
    10. 10)
      • 11. Krommweh, J.: ‘Tetrolet transform: a new adaptive haar wavelet algorithm for sparse image representation’, J. Vis. Commun. Image Represent., 2010, 21, (4), pp. 364374. Available at http://www.sciencedirect.com/science/article/pii/S1047320310000313.
    11. 11)
      • 20. Wang, X., Wang, Z.: ‘A novel method for image retrieval based on structure elements’ descriptor', J. Vis. Commun. Image Represent., 2013, 24, (1), pp. 6374.
    12. 12)
      • 34. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: ‘The dual-tree complex wavelet transform’, IEEE Signal Process. Mag., 2005, 22, (6), pp. 123151.
    13. 13)
      • 19. Pradhan, J., Kumar, S., Pal, A.K., et al: ‘A hierarchical CBIR framework using adaptive tetrolet transform and novel histograms from color and shape features’, Digital Signal Process., 2018, 82, pp. 258281.
    14. 14)
      • 40. Nene, S.A., Nayar, S.K., Murase, H., et al: ‘Columbia object image library (coil-20)’, 1996.
    15. 15)
      • 10. Liu, G.H., Zhang, L., Hou, Y.K., et al: ‘Image retrieval based on multi-texton histogram’, Pattern Recognit., 2010, 43, (7), pp. 23802389.
    16. 16)
      • 8. Chun, Y.D., Seo, S.Y., Kim, N.C.: ‘Image retrieval using bdip and bvlc moments’, IEEE Trans. Circuits Syst. Video Technol., 2003, 13, (9), pp. 951957.
    17. 17)
      • 36. Pradhan, J., Pal, A.K., Banka, H: ‘A prominent object region detection based approach for cbir application’. 2016 Fourth Int. Conf. on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 2016, pp. 447452.
    18. 18)
      • 42. ‘site www, vision & image’, lagis-vi.univ-lille1.fr, 2017'. accessed: 18 August 2017. Available at http://lagis-vi.univlille1.fr/datasets/outex.html.
    19. 19)
      • 29. Wang, X.Y., Chen, Z.F.: ‘A fast fractal coding in application of image retrieval’, Fractals, 2009, 17, (4), pp. 441450.
    20. 20)
      • 25. Meng, A., Shan, D., Shi, R., et al: ‘Merged region based image retrieval’, J. Vis. Commun. Image Represent., 2018, 55, pp. 572585https://doi.org/10.1016/j.jvcir.2018.07.003, (http://www.sciencedirect.com/science/article/pii/S1047320318301627).
    21. 21)
      • 16. Liu, G.H., Yang, J.Y.: ‘Content-based image retrieval using color difference histogram’, Pattern Recognit., 2013, 46, (1), pp. 188198.
    22. 22)
      • 17. Varish, N., Pradhan, J., Pal, A.K.: ‘Image retrieval based on non-uniform bins of color histogram and dual tree complex wavelet transform’, Multimedia Tools Appl., 2017, 76, (14), pp. 1588515921. Available at https://doi.org/10.1007/s11042-016-3882-4.
    23. 23)
      • 37. Giveki, D., Soltanshahi, M.A., Montazer, G.A.: ‘A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern’, Optik - Int. J. Light Electron Opt., 2017, 131, pp. 242254. Available at http://www.sciencedirect.com/science/article/pii/S0030402616313766.
    24. 24)
      • 21. Wang, X., Wang, Z.: ‘The method for image retrieval based on multi-factors correlation utilizing block truncation coding’, Pattern Recognit., 2014, 47, (10), pp. 32933303.
    25. 25)
      • 2. Guo, J.M., Prasetyo, H.: ‘Content-based image retrieval using features extracted from halftoning-based block truncation coding’, IEEE Trans. Image Process., 2015, 24, (3), pp. 10101024.
    26. 26)
      • 38. Wang, J.Z., Li, J., Wiederhold, G.: ‘Simplicity: semantics-sensitive integrated matching for picture libraries’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (9), pp. 947963.
    27. 27)
      • 35. Zhu, N., Wang, G., Yang, G., et al: ‘A fast 2d otsu thresholding algorithm based on improved histogram’. 2009 Chinese Conf. on Pattern Recognition, Nanjing, China, 2009, pp. 15.
    28. 28)
      • 5. Rui, Y., Huang, T.S., Chang, S.F.: ‘Image retrieval: current techniques, promising directions, and open issues’, J. Vis. Commun. Image Represent., 1999, 10, (1), pp. 3962. Available at http://www.sciencedirect.com/science/article/pii/S1047320399904133.
    29. 29)
      • 31. Wang, C., Wang, X., Xia, Z., et al: ‘Ternary radial harmonic fourier moments based robust stereo image zero-watermarking algorithm’, Inf. Sci., 2019, 470, pp. 109120.
    30. 30)
      • 33. Dou, J., Qin, Q., Tu, Z.: ‘Robust image matching based on the information of sift’, Optik, 2018, 171, pp. 850861.
    31. 31)
      • 6. Zeng, S., Huang, R., Wang, H., et al: ‘Image retrieval using spatiograms of colors quantized by gaussian mixture models’, Neurocomputing, 2016, 171, pp. 673684. Available at http://www.sciencedirect.com/science/article/pii/S0925231215009820.
    32. 32)
      • 26. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. arXiv preprint arXiv:14091556, 2014.
    33. 33)
      • 4. Huang, J., Kumar, S.R., Mitra, M., et al: ‘Image indexing using color correlograms’. Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997, pp. 762768.
    34. 34)
      • 9. Wang, X.y., Chen, Z.f., Yun, J.j.: ‘An effective method for color image retrieval based on texture’, Comput. Stand. Interfaces, 2012, 34, (1), pp. 3135.
    35. 35)
      • 15. Liu, G.H., Li, Z.Y., Zhang, L., et al: ‘Image retrieval based on micro-structure descriptor’, Pattern Recognit., 2011, 44, (9), pp. 21232133.
    36. 36)
      • 13. Ziou, D., Tabbone, S.: ‘Edge detection techniques an overview’, Int. J. Pattern Recognit., 1998, 8, (4), pp. 537559.
    37. 37)
      • 27. Liu, C., Wechsler, H.: ‘Robust coding schemes for indexing and retrieval from large face databases’, IEEE Trans. Image Process., 2000, 9, (1), pp. 132137.
    38. 38)
      • 7. Beura, S., Majhi, B., Dash, R.: ‘Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer’, Neurocomputing, 2015, 154, pp. 114. Available at http://www.sciencedirect.com/science/article/pii/S0925231214016968.
    39. 39)
      • 3. Swain, M., Ballard, D.: ‘Indexing via color histograms’. Third Int. Conf. on Computer Vision, Maratea, Italy, 1994, pp. 390393.
    40. 40)
      • 41. ‘tropical-fruits-db-1024x768.tar.gz’. Accessed: 18 August 2017. http://www.ic.unicamp.br/rocha/pub/downloads/tropical-fruits-DB-1024x7 68.tar.gz/.
    41. 41)
      • 22. Unar, S., Wang, X., Zhang, C.: ‘Visual and textual information fusion using kernel method for content based image retrieval’, Inf. Fusion, 2018, 44, pp. 176187.
    42. 42)
      • 30. Wang, C., Wang, X., Li, Y., et al: ‘Quaternion polar harmonic fourier moments for color images’, Inf. Sci., 2018, 450, pp. 141156.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6619
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6619
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading