http://iet.metastore.ingenta.com
1887

Fuzzy farthest point first method for MRI brain image clustering

Fuzzy farthest point first method for MRI brain image clustering

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Image clustering is considered amongst the most important tasks in medical image analysis and it is regularly required as a starter and vital stage in the computer-aided medical image process. In brain magnetic resonance imaging (MRI) analysis, image clustering is regularly used for estimating and visualising the brain anatomical structures, to detect pathological regions and to guide surgical procedures. This study presents a new method for MRI brain images clustering based on the farthest point first algorithm and fuzzy clustering techniques without using any a priori information about the clusters number. The algorithm has been approved against both simulated and clinical magnetic resonance images and it has been compared with the fourth clustered algorithms. Results demonstrate that the proposed algorithm has given reasonable segmentation of white matter, grey matter and cerebrospinal fluid from MRI data, which is superior in preserving image details and segmentation accuracy compared with the other four algorithms giving more than 91% in Jaccard similarity.

References

    1. 1)
      • 1. Chetih, N., Messali, Z., Serir, A., et al: ‘Robust fuzzy c-means clustering algorithm using non-parametric Bayesian estimation in wavelet transform domain for noisy MR brain image segmentation’, IET Image Process., 2018, 12, (5), pp. 652660.
    2. 2)
      • 2. Hartigan, J.A.: ‘Clustering algorithms’ (John Wiley & Sons, Inc., NY, USA, 1975).
    3. 3)
      • 3. Gao, W.: ‘Improved ant colony clustering algorithm and its performance study’, Comput. Intell. Neurosci., 2016, 2016, p. 14.
    4. 4)
      • 4. Zanaty, E.A.: ‘Determining the number of clusters for kernelized fuzzy c-means algorithms for automatic medical image segmentation’, Egypt. Inf. J., 2012, 13, (1), pp. 3958.
    5. 5)
      • 5. Ji, Z.X., Sun, Q., Xia, D.: ‘A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image’, Comput. Med. Imaging Graph., 2011, 35, (5), pp. 383397.
    6. 6)
      • 6. Xiao, K., Hock, S., Bargiela, A.: ‘Automatic brain MRI segmentation scheme based on feature weighting factors selection on fuzzy c-means clustering algorithms with Gaussian smoothing’, Int. J. Comput. Intell. Bioinf. Syst. Biol., 2010, 1, (3), pp. 316331.
    7. 7)
      • 7. Ulutagay, G., Nasibov, E.: ‘Fuzzy and crisp clustering methods based on the neighborhood concept: a comprehensive review 1’, J. Intell. Fuzzy Syst., 2012, 23, (6), pp. 271281.
    8. 8)
      • 8. Gonzalez, T.F.: ‘Clustering to minimize the maximum intercluster distance’, Theor. Comput. Sci., 1985, 38, (3), pp. 293306.
    9. 9)
      • 9. Dharmarajan, A., Velmurugan, T.: ‘Lung cancer data analysis by k-means and farthest first clustering algorithms’, Indian J. Sci. Technol., 2015, 8, (15), pp. 18.
    10. 10)
      • 10. Dunn, J.C.: ‘A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters’, J. Cybern., 1974, 3, (3), pp. 3257.
    11. 11)
      • 11. Bezdek, J.C.: ‘Pattern recognition with fuzzy objective function algorithms’ (Plenum Press, New York, 1982).
    12. 12)
      • 12. Elazab, A., Wang, C., Jia, F., et al: ‘Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy C-means clustering’, Comput. Math. Methods Med., 2015, 2015, Article ID 485495.
    13. 13)
      • 13. Lung, H.V., Kim, J.M.: ‘A generalized spatial fuzzy C-means algorithm for medical image segmentation’. Proc. IEEE Int. Conf. Fuzzy Systems, Korea, 2009, pp. 2024.
    14. 14)
      • 14. Ji, Z., Sun, Q., Xia, Y., et al: ‘Generalized rough fuzzy c-means algorithm for brain MR image segmentation’, Comput. Method Program Biomed., 2012, 108, (2), pp. 644655.
    15. 15)
      • 15. Kang, J., Min, Y.L.Q., Luan, Q.X., et al: ‘Novel modified fuzzy c-means algorithm with applications’, Digit. Signal Process., 2009, 19, (2), pp. 309319.
    16. 16)
      • 16. Ahmed, M.N., Yamany, S.M., Mohamed, N., et al: ‘A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data’, IEEE Trans. Med. Imaging, 2002, 21, (3), pp. 193199.
    17. 17)
      • 17. Chen, S., Zhang, D.: ‘Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure’, IEEE Trans. Syst. Man Cybern., 2004, 34, (4), pp. 19071916.
    18. 18)
      • 18. Chuang, K.S., Tzeng, H.L., Chen, S., et al: ‘Fuzzy c-means clustering with spatial information for image segmentation’, Comput. Med. Imaging. Graph, 2006, 30, (1), pp. 915.
    19. 19)
      • 19. Cai, W., Chen, S., Zhang, D.: ‘Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation’, Pattern Recognit., 2007, 40, (3), pp. 825838.
    20. 20)
      • 20. El-Melegy, M., Mokhtar, H.: ‘Tumor segmentation in brain MRI using a fuzzy approach with class center priors’, EURASIP J. Image Video Process., 2014, 2014, (1), pp. 114.
    21. 21)
      • 21. Hemanth, D., Anitha, J.J., Balas, V.: ‘Fast and accurate fuzzy C-means algorithm for MR brain image segmentation’, Wiley Periodicals, Int. J. Imaging Syst. Technol., 2006, 26, (3), pp. 188195.
    22. 22)
      • 22. Harsimranjot, K., Reecha, S.: ‘Segmentation of tumor region from brain MRI images using fuzzy C-means clustering and seeded region growing’, J. Comput. Eng. (IOSR-JCE), 2016, 18, (5), pp. 2024.
    23. 23)
      • 23. Rajendrana, A., Dhanasekaran, R.: ‘Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: a combined approach’. Proc. Int. Conf. Communication Technology and System Design, Procedia Engineering, Coimbatore, India, 2012, pp. 327333.
    24. 24)
      • 24. Parveen Singh, A.: ‘Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM’. Proc. IEEE Second Int. Conf. Signal Processing and Integrated Networks (SPIN), Noida, India, 2015.
    25. 25)
      • 25. Malakooti, M.V., Mousavi, S.A., Taba, N.H.: ‘MRI brain image segmentation using combined fuzzy logic and neural networks for the tumor detection’, J. Acad. Appl. Stud., 2013, 3, (5).
    26. 26)
      • 26. Deshmukh, R.J., Khule, R.S.: ‘Brain tumor detection using artificial neural network fuzzy inference system (ANFIS)’, Int. J. Comput. Appl. Technol. Res., 2014, 3, (3), pp. 50154.
    27. 27)
      • 27. Ortiz, A., Palacio, A.A., Górriz, J.M.: ‘Segmentation of brain MRI using SOM-FCM-based method and 3D statistical descriptors’, Comput. Math. Methods Med., 2013, 2013.
    28. 28)
      • 28. Guo, L., Chen, L., Wu, Y., et al: ‘Image guided fuzzy C-means for image segmentation’, Int. J. Fuzzy Syst., 2017, 19, (6), pp. 16601669.
    29. 29)
      • 29. MacQueen, J.B.: ‘Some methods for classification and analysis of multivariate observations’. Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability, Berkeley, 1967, pp. 281297.
    30. 30)
      • 30. Ruspini, E.H.: ‘A new approach to clustering’, Inf. Control, 1969, 15, (1), pp. 2232.
    31. 31)
      • 31. Ward, J.: ‘Hierarchical grouping to optimize an objective function’, J. Am. Stat. Assoc., 1963, 58, (301), pp. 236244.
    32. 32)
      • 32. Vovk, U., Pernus, F., Likar, B.A.: ‘Review of methods for correction of intensity inhomogeneity in MRI’, IEEE Trans. Med. Imaging, 2007, 26, (3), pp. 405421.
    33. 33)
      • 33. Brain Web.: Simulated Brain Database. Available at http://brainweb.bic.mni.mcgill.ca/brainweb/, accessed 25 February 2018.
    34. 34)
      • 34. Whole Brain Atlas clinical MR image database. Available at http://www.med.harvard.edu/aanlib/, accessed 25 February 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6618
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6618
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address