Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Higher precision range estimation for context-based adaptive binary arithmetic coding

The Lagrangian rate distortion optimisation is widely employed in modern video encoders, such as high-efficiency video coding (H.265/HEVC). In this work, the authors propose a more accurate context-based adaptive binary arithmetic coding look-up table that can enhance compression quality and provide substantially better accuracy of range estimation, by employing one-more bit with 64 probability states. For the hardware implementation, they propose a higher precision look-up table instead of the HEVC Test Model (HM) standard table. The authors also define a new finite-state machine to handle the probability changing in real-time. The significant BD-RATE gain of the proposed context modelling is up to 6.0% for all-intra mode and 13.0% for inter mode. This finite state machine offers no divergence from the H.265/HEVC standards and can be used in the current systems.

References

    1. 1)
      • 9. Belyaev, E., Gilmutdinov, M., Turlikov, A.: ‘Binary arithmetic coding system with adaptive probability estimation by ‘virtual sliding window’. 2006 IEEE Int. Symp. on Consumer Electronics, Texas, USA, 2006, pp. 15.
    2. 2)
      • 7. Said, A.: ‘Introduction to arithmetic coding-theory and practice’, Hewlett Packard Laboratories Report, 2004, pp. 10577149.
    3. 3)
      • 14. Eeckhaut, H., Christiaens, M., Schrauwen, B., et al: ‘Tuning the m-coder to improve Dirac's entropy coding’, WSEAS Trans. Inf. Sci. Applic., 2005, 2, (10), pp. 15631571.
    4. 4)
      • 16. Bossen, F., Bross, B., Suhring, K., et al: ‘HEVC complexity and implementation analysis’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16851696.
    5. 5)
      • 5. Wiegand, T., Schwarz, H., Joch, A., et al: ‘Rate-constrained coder control and comparison of video coding standards’, IEEE Trans. Circuits Syst. Video Technol., 2003, 13, (7), pp. 688703.
    6. 6)
      • 3. Vanne, J., Viitanen, M., Hamalainen, T.D., et al: ‘Comparative rate-distortion-complexity analysis of HEVC and AVC video codecs’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 18851898.
    7. 7)
      • 11. Vermeirsch, K., Barbarien, J., Lambert, P., et al: ‘Region-adaptive probability model selection for the arithmetic coding of video texture’. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 2011, pp. 15371540.
    8. 8)
      • 10. Nguyen, T., Schwarz, H., Kirchhoffer, H., et al: ‘Improved context modeling for coding quantized transform coefficients in video compression’. 28th Picture Coding Symp.,, Nagoya, Japan, 2010, pp. 378381.
    9. 9)
      • 1. Wiegand, T., Sullivan, G.J., Bjøntegaard, G., et al: ‘Overview of the h. 264/AVC video coding standard’, IEEE Trans. Circuits Syst. Video Technol., 2003, 13, (7), pp. 560576.
    10. 10)
      • 2. Sullivan, G.J., Ohm, J.R., Han, W.J., et al: ‘Overview of the high efficiency video coding (HEVC) standard’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16491668.
    11. 11)
      • 4. Sullivan, G.J., Wiegand, T.: ‘Rate-distortion optimization for video compression’, IEEE Signal Process. Mag., 1998, 15, (6), pp. 7490.
    12. 12)
      • 12. Belyaev, E., Veselov, A., Turlikov, A., et al: ‘Complexity analysis of adaptive binary arithmetic coding software implementations’. Smart Spaces and Next Generation Wired/Wireless Networking, Berlin, Germany, 2011, pp. 598607.
    13. 13)
      • 15. Auli-Llinas, F., Marcellin, M.W.: ‘Stationary probability model for microscopic parallelism in jpeg2000’, IEEE Trans. Multimed., 2014, 16, (4), pp. 960970.
    14. 14)
      • 6. Marpe, D., Wiegand, T.: ‘A highly efficient multiplication-free binary arithmetic coder and its application in video coding’. 2003. ICIP 2003. Proc. 2003 Int. Conf. on Image Processing, Barcelona, Spain, 2003, vol. 2, pp. II263.
    15. 15)
      • 13. Belyaev, E., Turlikov, A., Egiazarian, K., et al: ‘An efficient adaptive binary arithmetic coder with low memory requirement’, IEEE. J. Sel. Top. Signal. Process., 2013, 7, (6), pp. 10531061.
    16. 16)
      • 8. Lindstrom, P., Isenburg, M.: ‘Fast and efficient compression of floating-point data’, IEEE Trans. Vis. Comput. Graphics, 2006, 12, (5), pp. 12451250.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6602
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6602
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address