Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Statistical multidirectional line dark channel for single-image dehazing

Outdoor scenes often contain atmospheric degradation, such as fog or haze, which deteriorate the performance of tracking, autonomous driving and surveillance systems, among others, making dehazing methods an area of considerable interest. However, some dehazing techniques are computationally demanding, generating a trade-off between time-consumption and restoration quality. A new method is proposed for improving outdoor images taken with haze effects while making them less time-consuming. The proposed method was inspired by the Radon transform and tailored for dehazing images by computing the dark channel, in addition to using statistical computations and a heuristic approach to avoid saturated areas. The results obtained were subjected to a reduced-reference image quality dehazing assessment, a full-reference metrics Structural SIMilarity (SSIM) index and peak signal-to-noise ratio (PSNR) over real-world and synthetic outdoor images. The results demonstrate that the proposed method presents an adequate balance between new visible edges, increased gradient and saturated pixels, in addition to obtaining at least a 5% increase in the SSIM index and, a 16% increase in the PSNR index, as well as being 5.37 times faster than the four dehazing methods recently introduced in the literature.

References

    1. 1)
      • 3. Gao, Y., Chen, H., Li, H., et al: ‘Single image dehazing using local linear fusion’, IET Image Process., 2017, 12, (5), p. 637.
    2. 2)
      • 33. Gibson, K.B., Nguyen, T.Q.: ‘Fast single image fog removal using the adaptive Wiener filter’. 2013 IEEE Int. Conf. on Image Processing, Melbourne, Victoria, Australia, 2013, vol. 1, pp. 714718, Available to: http://ieeexplore.ieee.org/document/6738147/.
    3. 3)
      • 35. Huang, S., Cheng, F., Chiu, Y.: ‘Efficient contrast enhancement using adaptive gamma correction with weighting distribution’, IEEE Trans. Image Process., 2013, 22, (3), pp. 10321041.
    4. 4)
      • 26. Singh, D., Kumar, V.: ‘Modified gain intervention filter based dehazing technique’, J. Mod. Opt., 2017, 64, (20), pp. 21652178.
    5. 5)
      • 25. Zhu, M., He, B.: ‘Dehazing via graph cut’, Opt. Eng., 2017, 56, pp. 113105113111, Available to: http://dx.doi.org/10.1117/1.OE.56.11.113105.
    6. 6)
      • 20. Fattal, R.: ‘Dehazing using color-lines’, ACM Trans. Graph. (TOG), 2014, 34, (1), pp. 13:113:14.
    7. 7)
      • 21. Zhang, W., Hou, X.: ‘Estimation algorithm of atmospheric light based on ant colony optimization’. Proc. of the 2017 Int. Conf. on Intelligent Systems, Metaheuristics & Swarm Intelligence - ISMSI ‘17, Thimphu, Kingdom of Bhutan, 2017, pp. 2025, Available to: http://dl.acm.org/citation.cfm?doid=3059336.3059358.
    8. 8)
      • 15. Berman, D., Treibitz, T., Avidan, S.: ‘Non-local image dehazing’. The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, USA, 2016.
    9. 9)
      • 6. Akbarizadeh, G.: ‘A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (11), pp. 43584368.
    10. 10)
      • 5. Wang, Z., Watabe, D., Cao, J.: ‘Real-time grayscale dehazing scheme for car vision’. Int. Symp. on Affective Science and Engineering, Spokane, WA, USA, 2018.
    11. 11)
      • 1. Li, B., Ren, W., Fu, D., et al: ‘Benchmarking single-image dehazing and beyond’, IEEE Trans. Image Process., 2019, 28, (1), pp. 492505.
    12. 12)
      • 9. Kim, S., Park, S., Choi, K.: ‘A system architecture for real time traffic monitoring in foggy video’. 2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Mokpo, South Korea, 2015, pp. 14.
    13. 13)
      • 24. Gu, M., Zheng, L.T., Liu, Z.H.: ‘Infrared traffic image's enhancement algorithm combining dark channel prior and gamma correction’, J. Traffic Transp. Eng., 2016, 16, (6), pp. 149158.
    14. 14)
      • 23. Abdul Ghani, A.S., Mat Isa, N.A.: ‘Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification’, Comput. Electron. Agric., 2017, 141, pp. 181195.
    15. 15)
      • 37. Saggu, M.K., Singh, S.: ‘Different techinques to dehaze an underwaater image’, Int. J. Technol. Res. Eng., 2015, 2, (6), pp. 566568.
    16. 16)
      • 10. Li, B., Peng, X., Wang, Z., et al: ‘AOD-Net: all-in-one dehazing network’. Proc. of the IEEE Int. Conf. on Computer Vision, Venice, Italy, 2017, pp. 47804788.
    17. 17)
      • 28. Luan, Z., Shang, Y., Zhou, X., et al: ‘Fast single image dehazing based on a regression model’, Neurocomputing, 2017, 245, pp. 1022.
    18. 18)
      • 40. Scharstein, D., Szeliski, R.: ‘High-accuracy stereo depth maps using structured light’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2003 Proc. 2003, Madison, WI, USA, 2003.
    19. 19)
      • 27. Singh, D., Kumar, V.: ‘Dehazing of remote sensing images using improved restoration model based dark channel prior’, Imaging Sci. J., 2017, 65, (5), pp. 282292.
    20. 20)
      • 29. Fan, X., Wang, Y., Tang, X., et al: ‘Two-layer Gaussian process regression with example selection for image dehazing’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (12), pp. 25052517.
    21. 21)
      • 17. Galdran, A.: ‘Image dehazing by artificial multiple-exposure image fusion’, Signal Process., 2018, 149, pp. 135147, Available to: https://www.sciencedirect.com/science/article/pii/S0165168418301063#!.
    22. 22)
      • 12. Vinkey Sahu, M.M.S.: ‘A survey paper on single image dehazing’, Int. J. Recent Innov. Trends Comput Commun. (IJRITCC), 2015, 3, (2), pp. 8588.
    23. 23)
      • 18. Hautière, N., Tarel, J.P., Aubert, D., et al: ‘Blind contrast enhancement assessment by gradient ratioing at visible edges’, Image Anal. Stereol., 2008, 27, (2), pp. 8795.
    24. 24)
      • 34. Lee, S., Yun, S., Nam, J.H., et al: ‘A review on dark channel prior based image dehazing algorithms’, EURASIP J. Image Video Process., 2016, 2016, (1), p. 4, Available to: https://doi.org/10.1186/s13640-016-0104-y.
    25. 25)
      • 19. Li, B., Ren, W., Fu, D., et al: ‘RESIDE: a benchmark for single image dehazing’, CoRR, 2017, abs/1712.0. Available at: http://arxiv.org/abs/1712.04143.
    26. 26)
      • 13. He, K., Sun, J., Tang, X.: ‘Single image haze removal using dark channel prior’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (12), pp. 23412353.
    27. 27)
      • 14. Deans, S.R.: ‘The radon transform and some of its applications’ (Courier Corporation, Massachusetts, USA, 2007).
    28. 28)
      • 38. Salazar Colores, S., Ramos Arreguín, J.M., Ortiz Echeverri, C.J., et al: ‘Image dehazing using morphological opening, dilation and Gaussian filtering’, Signal. Image. Video. Process., 2018, 12, (7), pp. 13291335.
    29. 29)
      • 30. Bashir, Z., Raja, G., Ullah, M.O.: ‘A video enhancement algorithm for low-lighting environment using field programmable gate array (fpga) architecture’, NED Univ. J. Res., 2016, 13, (4), pp. 8189.
    30. 30)
      • 8. Long, J., Shi, Z., Tang, W., et al: ‘Single remote sensing image dehazing’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (1), pp. 5963.
    31. 31)
      • 22. Khmag, A., Al Haddad, S.A.R., Ramli, A.R., et al: ‘Single image dehazing using second-generation wavelet transforms and the mean vector L2-norm’, Vis. Comput., 2018, 34, (5), pp. 675688.
    32. 32)
      • 32. Zhao, X., Ding, W., Liu, C., et al: ‘Haze removal for UAV aerial video based on optimization of spatial–temporal coherence’, IET Image Process., 2017, 12, (1), pp. 8897.
    33. 33)
      • 16. Ren, W., Liu, S., Zhang, H., et al: ‘Single image dehazing via multi-scale convolutional neural networks’. 14th European Conf. Computer Vision – ECCV 2016, Amsterdam, The Netherlands, October 11–14, 2016, pp. 154169, Available to: https://doi.org/10.1007/978-3-319-46475-6_10.
    34. 34)
      • 31. Tang, X., Jiao, L.: ‘Fusion similarity-based reranking for SAR image retrieval’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (2), pp. 242246.
    35. 35)
      • 4. Singh, D., Kumar, V.: ‘A comprehensive review of computational dehazing techniques’, Arch. Comput. Meth. Eng., 2018, pp. 119, Available to: https://doi.org/10.1007/s11831-018-9294-z.
    36. 36)
      • 2. Chengtao, C., Qiuyu, Z., Yanhua, L.: ‘A survey of image dehazing approaches’. Proc. of the 2015 27th Chinese Control and Decision Conf., CCDC 2015, Qingdao, China, 2015, pp. 39643969.
    37. 37)
      • 11. Wang, W., Yuan, X., Wu, X., et al: ‘Fast image dehazing method based on linear transformation’, IEEE Trans. Multimed., 2017, 19, (6), pp. 11421155.
    38. 38)
      • 39. Wang, J.B., He, N., Zhang, L.L., et al: ‘Single image dehazing with a physical model and dark channel prior’, Neurocomputing, 2015, 149, (Part), pp. 718728, Available to: http://www.sciencedirect.com/science/article/pii/S0925231214010157.
    39. 39)
      • 7. Modava, M., Akbarizadeh, G., Soroosh, M.: ‘Integration of spectral histogram and level set for coastline detection in sar images’, IEEE Trans. Aerosp. Electron. Syst., 2018, 55, (2), pp. 810819.
    40. 40)
      • 36. Heckbert, P.S., Karel, , Zuiderveld, K.: ‘Graphics Gems IV’, In: Heckbert, P.S. (Ed.): ‘Graphics gems IV’ (Academic Press Professional, Inc., San Diego, CA, USA, 1994), pp. 474485, Available to: http://dl.acm.org/citation.cfm?id=180895.180940https://dl.acm.org/citation.cfm?id=180940.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6403
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6403
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address