Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Image denoising by low-rank approximation with estimation of noise energy distribution in SVD domain

Low-rank approximation has shown great potential in various image tasks. It is found that there is a specific functional relationship about singular values between the original image and a series of noisy images, which can be used to construct the singular values of a noise-free image. In this study, the authors propose a novel denoising method based on the above facts and low-rank approximation theory. Firstly, they estimate the noise energy distribution of the group matrix in the singular value decomposition (SVD) domain using the energy characteristics of the image with different noise levels. The energy distribution of the noise is shrunk to obtain the energy distribution of the true signal. Then, based on the optimal energy compaction property of SVD, the low-rank property of matrix is constrained in the SVD domain to obtain the low-rank approximation of the matrix. Moreover, an iterative back projection method is adopted in this study to suppress residual noise. A new noise standard deviation estimation approach, targeted at the back projection process, is proposed to effectively optimise the denoising results during the iteration. Experimental results show that the authors’ method efficiently decreases the noise and achieves comparable denoising performance to the state-of-the-art methods regarding both quantitative measurement and visual effect.

References

    1. 1)
      • 19. Zhang, M., Desrosiers, C.: ‘Image denoising based on sparse representation and gradient histogram’, IET Image Process., 2017, 11, (1), pp. 5463.
    2. 2)
      • 14. Chang, S.G., Yu, B., Vetterli, M.: ‘Adaptive wavelet thresholding for image denoising and compression’, IEEE Trans. Image Process., 2002, 9, (9), pp. 15321546.
    3. 3)
      • 35. Gu, S., Xie, Q., Meng, D., et al: ‘Weighted nuclear norm minimization and its applications to low level vision’, Int. J. Comput. Vis., 2017, 121, (2), pp. 183208.
    4. 4)
      • 20. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Image denoising by sparse 3-D transform- domain collaborative filtering’, IEEE Trans. Image Process., 2007, 16, (8), pp. 20802095.
    5. 5)
      • 9. Zuo, W., Zhang, L., Song, C., et al: ‘Gradient histogram estimation and preservation for texture enhanced image denoising’, IEEE Trans. Image Process., 2014, 23, (6), pp. 24592472.
    6. 6)
      • 12. Liu, H., Xiong, R., Zhang, J., et al: ‘Image denoising via adaptive soft-thresholding based on non-local samples’. Computer Vision and Pattern Recognition, San Diego, USA., 2005, pp. 484492.
    7. 7)
      • 37. Guo, Q., Zhang, C., Zhang, Y., et al: ‘An efficient SVD-based method for image denoising’, IEEE Trans. Circuits Syst. Video Technol., 2016, 26, (5), pp. 868880.
    8. 8)
      • 16. Konstantinides, K., Natarajan, B., Yovanof G, S.: ‘Noise estimation and filtering using block-based singular value decomposition’, IEEE Trans. Image Process., 1997, 6, (3), pp. 479483.
    9. 9)
      • 29. Zha, Z., Liu, X., Huang, X., et al: ‘Analyzing the group sparsity based on the rank minimization methods’. IEEE Int. Conf. on Multimedia and Expo (ICME 2017), Hong Kong, 2017, pp. 883888.
    10. 10)
      • 2. Donoho, D.L., Johnstone, J.M.: ‘Ideal spatial adaptation by wavelet shrinkage’, Biometrika, 1994, 81, (3), pp. 425455.
    11. 11)
      • 13. Foi, A., Katkovnik, V., Egiazarian, K.: ‘Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images’, IEEE Trans. Image Process., 2007, 16, (5), pp. 13951411.
    12. 12)
      • 1. Buades, A., Coll, B., Morel J, M.: ‘A non-local algorithm for image denoising’, Comput. Vis. Pattern Recognit., 2005, 2, (7), pp. 6065.
    13. 13)
      • 24. Mairal, J., Bach, F., Ponce, J., et al: ‘Non-local sparse models for image restoration’. IEEE Int. Conf. on Computer Vision, Kyoto, Japan, 2010, vol.30, no. (2), pp. 22722279.
    14. 14)
      • 7. Zhang, X., Feng, X., Wang, W.: ‘Two-direction nonlocal model for image denoising’, IEEE Trans. Image Process., 2013, 22, (1), pp. 408412.
    15. 15)
      • 22. Dabov, K., Foi, A., Katkovnik, V., et al: ‘Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space’. IEEE Int. Conf. on Image Processing, San Antonio, USA., 2007, vol.1, pp. I-313I-316.
    16. 16)
      • 5. Tomasi, C., Manduchi, R.: ‘Bilateral filtering for gray and color images’. Proc. Int. Conf. Computer Vision, Bombay, India, 1998, pp. 839846.
    17. 17)
      • 6. Sutour, C., Deledalle, C.A., Aujol, J.F.: ‘Adaptive regularization of the NL-means: application to image and video denoising’, IEEE Trans. Image Process., 2014, 23, (8), pp. 35063521.
    18. 18)
      • 17. Aharon, M., Elad, M., Bruckstein, A.: ‘rmk-SVD: An algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    19. 19)
      • 3. Shin, D.H., Park, R.H., Yang, S., et al: ‘Block-based noise estimation using adaptive Gaussian filtering’, IEEE Trans. Consum. Electron., 2005, 51, (1), pp. 218226.
    20. 20)
      • 28. Zha, Z., Zhang, X., Wang, Q., et al: ‘Group sparsity residual with non-local samples for image denoising’. Proc. of the 43th IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2018), Calgary, Canada, 2018, pp. 13531357.
    21. 21)
      • 11. Fan, L., Li, X., Fan, H., et al: ‘Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors’, IEEE Trans. Circuits Syst. Video Technol., doi: 10.1109/TCSVT.2018.2878794, to appear.
    22. 22)
      • 34. Gu, S., Zhang, L., Zuo, W., et al: ‘Weighted nuclear norm minimization with application to image denoising’. IEEE Conf. on Computer Vision and Pattern Recognition, Washington DC, USA., 2014, pp. 28622869.
    23. 23)
      • 42. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    24. 24)
      • 18. Elad, M., Aharon, M.: ‘Image denoising via sparse and redundant representations over learned dictionaries’, IEEE Trans. Image Process., 2006, 15, (12), pp. 37363745.
    25. 25)
      • 38. Candès E, J., Recht, B.: ‘Exact matrix completion via convex optimization’, Found. Comput. Math., 2009, 9, (6), p. 717.
    26. 26)
      • 40. Jia, X., Feng, X., Wang, W.: ‘Rank constrained nuclear norm minimization with application to image denoising’, Signal Process., 2016, 129, pp. 111.
    27. 27)
      • 25. Dong, W., Zhang, L., Shi, G., et al: ‘Nonlocally centralized sparse representation for image restoration’, IEEE Trans. Image Process., 2013, 22, (4), pp. 16181628.
    28. 28)
      • 31. Jing, P., Su, Y., Nie, L., et al: ‘Low-rank multi-view embedding learning for micro-video popularity prediction’, IEEE Trans. Knowl. Data Eng., 2018, PP, (99), pp. 15191532.
    29. 29)
      • 39. Eckart, C., Young, G.: ‘The approximation of one matrix by another of lower rank’, Psychometrika, 1936, 1, (3), pp. 211218.
    30. 30)
      • 21. Dabov, K., Foi, A., Katkovnik, V., et al: ‘BM3D image denoising with shape-adaptive principal component analysis’. Proc. Signal Processing with Adaptive Sparse Structured Representations, Saint-Malo, France, 2009.
    31. 31)
      • 8. Deledalle, C.A., Duval, V., Salmon, J.: ‘Non-local methods with shape-adaptive patches (NLM-SAP)’, J. Math. Imaging Vis., 2012, 43, (2), pp. 103120.
    32. 32)
      • 27. Zhang, L., Dong, W., Zhang, D., et al: ‘Two-stage image denoising by principal component analysis with local pixel grouping’, Pattern Recognit., 2010, 43, (4), pp. 15311549.
    33. 33)
      • 15. Guo, Q., Zhang, C.: ‘A noise reduction approach based on Stein's unbiased risk estimate’, Sci. Asia, 2012, 38, (2), pp. 207211.
    34. 34)
      • 30. Zha, Z., Liu, X., Zhou, Z., et al: ‘Image denoising via group sparsity residual constraint’. Proc. of the 42th IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2017), New Orleans, USA., 2017, pp. 17871791.
    35. 35)
      • 33. Cai, J.F., Candès, E.J., Shen, Z.: ‘A singular value thresholding algorithm for matrix completion’, SIAM J. Optim., 2008, 20, (4), pp. 19561982.
    36. 36)
      • 36. Dong, W., Shi, G., Li, X.: ‘Nonlocal image restoration with bilateral variance estimation: a low-rank approach’, IEEE Trans. Image Process., 2013, 22, (2), pp. 700711.
    37. 37)
      • 32. Jing, P., Su, Y., Nie, L., et al: ‘A framework of joint low-rank and sparse regression for image memorability prediction’, IEEE Trans. Circuits Syst. Video Technol., 2018, PP, (99), pp. 11.
    38. 38)
      • 10. Fan, L., Li, X., Guo, Q., et al: ‘Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection’, Sci. China Inf. Sci., 2018, 61, (4), p. 049101.
    39. 39)
      • 23. Maggioni, M., Boracchi, G., Foi, A., et al: ‘Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms’, IEEE Trans. Image Process., 2012, 21, (9), pp. 39523966.
    40. 40)
      • 26. Liu, Q., Zhang, C., Guo, Q., et al: ‘Adaptive sparse coding on PCA dictionary for image denoising’, Vis. Comput., 2016, 32, (4), pp. 535549.
    41. 41)
      • 4. Pyatykh, S., Zheng, L.: ‘Image noise level estimation by principal component analysis’, IEEE Trans. Image Process., 2013, 22, (2), pp. 687699.
    42. 42)
      • 41. Rajwade, A., Rangarajan, A., Banerjee, A.: ‘Image denoising using the higher order singular value decomposition’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (4), pp. 849862.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6357
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6357
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address