© The Institution of Engineering and Technology
The optimum non-negative integer bit allocation (ONIBA) is an important technique, which provides optimal quantisation of transform coefficients for the image transform coders (ITCs). However, the existing ONIBA algorithms are still not popular for the discrete cosine transform (DCT)-based ITCs, due to their image-dependent nature and additional side information requirements. Therefore, this study presents a novel image-independent ONIBA (IIONIBA) technique to achieve efficient quantisation for the DCT-ITCs. For the development of the proposed IIONIBA technique, initially, an image-dependent ONIBA algorithm is proposed, which is then mapped into desired image-independent solution via utilisation of a prepared combined image and proposed modified step size mapping technique. Thereafter, a new lookup table for the elements of quantisation tables, obtained from the proposed IIONIBA technique, is established using non-linear regression analysis, to reduce the problem of additional side information requirements. Several experiments are performed to evaluate the performance of the proposed IIONIBA technique based on the visual quality assessment of reconstructed images and the image quality indexes peak signal to noise ratio (PSNR) and mean structural similarity index (MSSIM). The results show that the proposed IIONIBA technique delivers better quantisation and provides significant gains in the image quality indexes as compared to the recent quantisation techniques.
References
-
-
1)
-
2. Thakur, V.S., Gupta, S., Thakur, K.: ‘Hybrid WPT-BDCT transform for high-quality image compression’, IET Image Process.., 2017, 11, (10), pp. 899–909.
-
2)
-
21. Hachicha, W., Kaaniche, M., Beghdadi, A., et al: ‘Efficient inter-view bit allocation methods for stereo image coding’, IEEE Trans. Multimed., 2015, 17, (6), pp. 765–777.
-
3)
-
19. Pak, M., Bayazıt, U.: ‘JPEG2000 bit allocation with edge-texture and fixation duration maps’. 24th Signal Processing and Communication Application Conf. (SIU), Zonguldak, 2016, pp. 281–284.
-
4)
-
1. Manju, V.N., Lenin, F.A.: ‘AC coefficient and K-means cuckoo optimisation algorithm-based segmentation and compression of compound images’, IET Image Process.., 2018, 12, (2), pp. 218–225.
-
5)
-
15. Farber, B., Zeger, K.: ‘Quantization of multiple sources using nonnegative integer bit allocation’, IEEE Trans. Inf. Theory, 2006, 52, (11), pp. 4945–4964.
-
6)
-
20. Bera, P., Gupta, R.: ‘Real-time compression of electrocardiogram using dynamic bit allocation strategy’. IEEE First Int. Conf. on Control, Measurement and Instrumentation (CMI), Kolkata, 2016, pp. 21–25.
-
7)
-
13. Huang, J., Schultheiss, P.: ‘Block quantization of correlated Gaussian random variables’, IEEE Trans. Commun. Syst., 1963, 11, (3), pp. 289–296.
-
8)
-
9)
-
10. Wien, M.: ‘High efficiency video coding: coding tools and specifications’ (Springer, Springer-Verlag Berlin Heidelberg, 2015, 1st edn.).
-
10)
-
3. Wallace, G.K.: ‘The JPEG still picture compression standard’, Commun. ACM, 1991, 34, (4), pp. 30–44.
-
11)
-
23. Cheng, H., Lerner, C.: ‘Bit allocation for lossy image set compression’. 2015 IEEE Pacific Rim Conf. on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, 2015, pp. 52–57.
-
12)
-
27. Jayaraman, S., Esakkirajan, S., Veerakumar, T.: ‘Image compression’, in ‘Digital image processing’ (Tata McGraw Hill Education, New York, USA, 2009, 1st edn.), pp. 444–541.
-
13)
-
14. Fox, B.: ‘Discrete optimization via marginal analysis’, Manage. Sci., 1966, 13, (3), pp. 210–216.
-
14)
-
28. Sun, C., Yang, E.H.: ‘An efficient DCT-based image compression system based on Laplacian transparent composite model’, IEEE Trans. Image Process., 2015, 24, (3), pp. 886–900.
-
15)
-
32. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600–612.
-
16)
-
11. Ahmed, N., Natarajan, T., Rao, K.R.: ‘Discrete cosine transform’, IEEE Trans. Commun., 1974, 23, (1), pp. 90–93.
-
17)
-
18)
-
4. Chang, H., Ng, M.K., Zeng, T.: ‘Reducing artifacts in JPEG decompression via a learned dictionary’, IEEE Trans. Sig. Proc., 2014, 62, (3), pp. 718–728.
-
19)
-
20)
-
16. Gazzah, H., Khandani, A. K.: ‘Optimum non-integer rate allocation using integer programming’, Electron. Lett., 1997, 33, (24), p. 2034, .
-
21)
-
18. Hachicha, W., Kaaniche, M., Beghdadi, A., et al: ‘Efficient inter-view bit allocation methods for stereo image coding’, IEEE Trans. Multimed., 2015, 17, (6), pp. 765–777.
-
22)
-
25. Hatam, M., Shirazi, M.A.M.: ‘Optimum nonnegative integer bit allocation for wavelet based signal compression and coding’, Inf. Sci., 2015, 297, (10), pp. 332–334.
-
23)
-
12. Gonzalez, R.C., Woods, R.E.: ‘Image compression’, in ‘Digital image processing’ (Prentice Hall, New Jersey, USA, 2012, 3rd edn.), pp. 526–538.
-
24)
-
29. Abu, N.A., Basari, A.S.H., Hussin, B.: ‘A novel psychovisual model on a standard resolution for video compression’, ARPN J. Eng. Appl. Sci., 2016, 11, (5), pp. 3259–3264.
-
25)
-
26)
-
5. Thai, T.H., Cogranne, R., Retraint, F., et al: ‘JPEG quantization step estimation and its applications to digital image forensics’, IEEE Trans. Infor. Foren. Secur., 2017, 12, (1), pp. 123–133.
-
27)
-
17. Guo, L., Meng, Y.: ‘Round-up of integer bit allocation’, Electron. Lett., 2002, 38, (10), pp. 466–467.
-
28)
-
6. Tyagi, V.: ‘Image compression’, in ‘Understanding digital image processing’ (CRC Press, Boca Raton, USA, 2018, 1st edn.), pp. 127–146.
-
29)
-
26. Hatam, M., Shirazi, M.A.M.: ‘Analytical method for optimum non-negative integer bit allocation’, IET Signal Process.., 2016, 10, (8), pp. 936–946.
-
30)
-
22. Preihs, S., Ostermann, J.: ‘Globally optimized dynamic bit-allocation strategy for subband ADPCM-based low delay audio coding’. IEEE Intern. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, 2015, pp. 399–403.
-
31)
-
24. Wu, J.F., Chan, S.C., Liu, A.L., et al: ‘An efficient rate allocation algorithm for transmission and storage of compressed biomedical signals in wireless health monitoring systems'. IEEE Region 10 Conf. (TENCON), Singapore, 2016, pp. 2694–2697.
-
32)
-
30. Simone, F.D., Frossard, P., Wilkins, P., et al: ‘Geometry-driven quantization for omnidirectional image coding’. Picture Coding Symp. (PCS), Nuremberg, 2016, pp. 1–5.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6302
Related content
content/journals/10.1049/iet-ipr.2018.6302
pub_keyword,iet_inspecKeyword,pub_concept
6
6