Online burr video denoising by learning sparsifying transform

Online burr video denoising by learning sparsifying transform

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The burrs on high-voltage copper contact leads to point discharge and device damage. Since the high-voltage copper contact has different machining batch and the contour various which the machine tool remove is not economic and robot usually is used to remove the burrs of high-voltage copper contact. The first step for robot deburring is to identify burrs. In order to improve the performance of copper contact burr video denoising, this article presents online burr video denoising sparsifying transforms algorithm, which defined two alternative values between the optimal sparse signal and transform learning dictionary, simultaneously, calculated the mean of peak signal-to-noise ratio, the mean of execution time, the STD (STandard Deviation), and the VAR (VARiance), accordingly presented an burr video denoising algorithm and compared with state-of-the-art video denoising algorithms. The experiment results show that compared with traditional methods, the burr video denoising algorithm has higher denoising precision, faster denoising speed, and stronger high-noise-level processing capacity, and so on. The numeric experiments show that the proposed approach has higher peak signal-to-noise ratio and less computation complexity than the existing video denoising methods.


    1. 1)
      • 1. Lee, Y.D., Kang, B.H., Park, J.O.: ‘Robotic deburring strategy using burr shape recognition’. IEEE/RSJ Int. Conf. on Intelligent, Kyongju, Korea, 1999, vol.3, no. 3, pp. 15131518.
    2. 2)
      • 2. Çalışkan, A., Çevik, U.: ‘An efficient noisy pixels detection model for CT images using extreme learning machines’, Tehnički Vjesnik, 2018, 25, (3), pp. 679686.
    3. 3)
      • 3. Wen, B., Ravishankar, S., Bresler, Y.: ‘Video denoising by online 3D sparsifying transform learning’. IEEE Int. Conf. on Image Processing, Quebec, Canada, 2015, pp. 118122.
    4. 4)
      • 4. Wen, B., Ravishankar, S., Bresler, Y.: ‘Structured overcomplete sparsifying transform learning with convergence guarantees and applications’, Int. J. Comput. Vis., 2015, 114, (2–3), pp. 137167.
    5. 5)
      • 5. Xiao, J., Tian, H., Zhang, Y., et al: ‘Blind video denoising via texture-aware noise estimation’, Comput. Vis. Image Underst., 2018, 169, pp. 113.
    6. 6)
      • 6. Zhihang, R., Jiajia, L., Shuaicheng, L.: ‘Meshflow video denoising’. IEEE Int. Conf. on Image Processing (ICIP), Beijing, China, 2017, pp. 29662970.
    7. 7)
      • 7. Sheng, L.L., Zare, M.R.: ‘Biomedical compound figure detection using deep learning and fusion techniques’, IET Image Process., 2018, 12, (6), pp. 10311037.
    8. 8)
      • 8. Han, Y., Chen, R.: ‘Efficient video denoising based on dynamic nonlocal means’, Image Vis. Comput., 2012, 30, (2), pp. 7885.
    9. 9)
      • 9. Mahmoudi, M., Sapiro, G.: ‘Fast image and video denoising via nonlocal means of similar neighborhoods’, IEEE Signal Process. Lett., 2005, 12, (12), pp. 839842.
    10. 10)
      • 10. Sutour, C., Deledalle, C.-A., Aujol, J.-R.: ‘Adaptive regularization of the NL-means: application to image and video denoising’, IEEE Trans. Image Process., 2014, 23, (8), pp. 35063521.
    11. 11)
      • 11. Buades, A., Lisani, J.-L., Miladinovic, M.: ‘Patch-based video denoising with optical flow estimation’, IEEE Trans. Image Process., 2016, 25, (6), pp. 25732586.
    12. 12)
      • 12. Varghese, G., Wang, Z.: ‘Video denoising based on a spatiotemporal Gaussian scale mixture model’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (7), pp. 10321040.
    13. 13)
      • 13. Zhang, W., Xu, L., Li, Z., et al: ‘A deep-intelligence framework for online video processing’, IEEE Softw., 2016, 33, (2), pp. 4451.
    14. 14)
      • 14. Shekar, B.H., Pilar, B.: ‘Discrete cosine transformation and height functions based shape representation and classification’, Procedia Comput. Sci., 2015, 58, pp. 714722.
    15. 15)
      • 15. Righettini, P., Strada, R., Olama, E.K., et al: ‘Online wavelet comple-mentary velocity estimator’, ISA Trans., 2018, 73, pp. 268277.
    16. 16)
      • 16. Carassale, L., Marrè-Brunenghi, M., Patrone, S.: ‘Wavelet-based identification of rotor blades in passage through resonance tests’, Mech. Syst. Signal Process, 2018, 98, pp. 124138.
    17. 17)
      • 17. Dabov, K., Foi, A., Zarian, K.E.: ‘Video denoising by sparse 3D transform domain collaborative filtering’. 15th European Signal Processing Conf. (EUSIP CO2007), Poznan, Poland, 3–7 September 2007.
    18. 18)
      • 18. Maggioni, M., Boracchi, G., Foi, A., et al: ‘Video denoising, deblocking and enhancement through separable 4-D nonlocal spatiotemporal transforms’, IEEE Trans. Image Process., 2012, 21, (9), p. 3952.
    19. 19)
      • 19. Ji, H., Huang, S., Shen, Z., et al: ‘Robust video restoration by joint sparse and low rank matrix approximation’, SIAM J. Imaging Sci., 2011, 4, (4), pp. 11221142.
    20. 20)
      • 20. Zhao, X., An, G., Cen, Y., et al: ‘Robust generalized low rank approximations of matrices for video denoising’. IEEE Int. Conf. on Signal Processing, Chendu, China, 2017.
    21. 21)
      • 21. Guo, H., Vaswani, N.: ‘Video denoising and enhancement via dynamic video layering’, IEEE Signal. Proc. Let., 2018, 25, (7), pp. 10091013.
    22. 22)
      • 22. Aurich, J.C., Dornfeld, D., Arrazola, P.J., et al: ‘Burrs-Analysis, control and removal’, CIRP Ann. Manuf. Technol., 2009, 58, pp. 519542.
    23. 23)
      • 23. Ravishankar, S., Bresler, Y.: ‘Learning sparsifying transforms’, IEEE Trans. Signal Process., 2013, 61, (5), pp. 10721086.
    24. 24)
      • 24. Stankovic, L., Dakovic, M., Vujovic, S.: ‘Adaptive variable step algorithm for missing samples recovery in sparse signals’, IET Signal Process., 2013, 8, (3), pp. 246256.
    25. 25)
      • 25. Gou, S., Liu, S., Wu, Y., et al: ‘Image super-resolution based on the pairwise dictionary selected learning and improved bilateral regularisation’, IET Image Process., 2016, 10, (2), pp. 101112.

Related content

This is a required field
Please enter a valid email address