Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fundus image quality assessment: survey, challenges, and future scope

Various ocular diseases, such as cataract, diabetic retinopathy, and glaucoma have affected a large proportion of the population worldwide. In ophthalmology, fundus photography is used for the diagnosis of such retinal disorders. Nowadays, the set-up of fundus image acquisition has changed from a fixed position to portable devices, making acquisition more vulnerable to distortions. However, a trustworthy diagnosis solely relies upon the quality of the fundus image. In recent years, fundus image quality assessment (IQA) has drawn much attention from researchers. This study presents a detailed survey of the fundus IQA research. The survey covers a comprehensive discussion on the factors affecting the fundus image quality and the real-time distortions. The fundus IQA algorithms have been analysed on the basis of the methodologies used and divided into three classes, namely: (i) similarity-based, (ii) segmentation-based, and (iii) machine learning based. In addition, limitations of state of the art in this research field are also presented with the possible solutions. The objective of this study is to provide a detailed information about the fundus IQA research with its significance, present status, limitations, and future scope. To the best of the authors’ knowledge, this is the first survey paper on the fundus IQA research.

References

    1. 1)
      • 68. Zhang, Z., Yin, F.S., Liu, J., et al: ‘Origa-light: An online retinal fundus image database for glaucoma analysis and research’. 2010 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 2010, pp. 30653068.
    2. 2)
      • 1. Methodology for the subjective assessment of the quality of television pictures’, 2012. Available at https://www.itu.int/dmspubrec/itu-r/rec/bt/R-RECBT.500-11-200206-S!!PDF-E.pdf.
    3. 3)
      • 26. Ye, P., Kumar, J., Kang, L., et al: ‘Unsupervised feature learning framework for no-reference image quality assessment’. 2012 IEEE Conf. on computer vision and pattern recognition, Providence, USA, 2012, pp. 10981105.
    4. 4)
      • 20. Gu, K., Zhai, G., Yang, X., et al: ‘A new reduced-reference image quality assessment using structural degradation model’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Beijing, China, 2013, pp. 10951098.
    5. 5)
      • 69. Lee, S.C., Wang, Y.: ‘Automatic retinal image quality assessment and enhancement’, in ‘Medical imaging 1999: image processing’, vol. 3661, (International Society for Optics and Photonics, 1999), pp. 15811591.
    6. 6)
      • 101. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. IEEE Conf. on Computer vision and pattern recognition, 2009. CVPR 2009, Miami Beach, USA, 2009, pp. 15971604.
    7. 7)
      • 62. Zheng, Y., Hijazi, M.H.A., Coenen, F.: ‘Automated ‘disease / no disease’ grading of age-related macular degeneration by an image mining approach’, Investigative Ophthalmol. Vis. Sci., 2012, 53, (13), p. 8310.
    8. 8)
      • 9. Ponomarenko, N., Lukin, V., Zelensky, A., et al: ‘Tid2008-a database for evaluation of full-reference visual quality assessment metrics’, Adv. Modern Radioelectron., 2009, 10, (4), pp. 3045.
    9. 9)
      • 96. ‘Haralik texture features’. Available at http://murphylab.web.cmu.edu/publications/boland/bolandnode26.html.
    10. 10)
      • 50. Sevik, U., Kose, C., Berber, T., et al: ‘Identification of suitable fundus images using automated quality assessment methods’, J. Biomed. Opt., 2014, 19, (4), p. 046006.
    11. 11)
      • 19. Min, X., Gu, K., Zhai, G., et al: ‘Saliency-induced reduced-reference quality index for natural scene and screen content images’, Signal Process., 2018, 145, pp. 127136.
    12. 12)
      • 93. Zhu, X., Milanfar, P.: ‘Automatic parameter selection for denoising algorithms using a no-reference measure of image content’, IEEE Trans. Image Process., 2010, 19, (12), pp. 31163132.
    13. 13)
      • 58. Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., et al: ‘Diaretdb0: evaluation database and methodology for diabetic retinopathy algorithms’. Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, 2006, vol. 73.
    14. 14)
      • 84. Veiga, D., Pereira, C., Ferreira, M.J., et al: ‘Quality evaluation of digital fundus images through combined measures’, J. Med. Imag., 2014, 1, (1), p. 014001.
    15. 15)
      • 35. Guan, J., Yi, S., Zeng, X., et al: ‘Visual importance and distortion guided deep image quality assessment framework’, IEEE Trans. Multimed., 2017, 19, (11), pp. 25052520.
    16. 16)
      • 34. Hou, W., Gao, X., Tao, D., et al: ‘Blind image quality assessment via deep learning’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 12751286.
    17. 17)
      • 40. Yue, G., Hou, C., Zhou, T., et al: ‘Effective and efficient blind quality evaluator for contrast distorted images’, IEEE Trans. Instrum. Meas., 2018, pp. 19.
    18. 18)
      • 59. Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., et al: ‘The diaretdb1 diabetic retinopathy database and evaluation protocol’. BMVC, Coventry, UK, 2007, pp. 110.
    19. 19)
      • 11. Larson, E.C., Chandler, D.M.: ‘Most apparent distortion: full-reference image quality assessment and the role of strategy’, J. Electron. Imaging, 2010, 19, (1), p. 011006.
    20. 20)
      • 46. Razaak, M., Martini, M.G., Savino, K.: ‘A study on quality assessment for medical ultrasound video compressed via hevc’, IEEE. J. Biomed. Health. Inform., 2014, 18, (5), pp. 15521559.
    21. 21)
      • 32. Kang, L., Ye, P., Li, Y., et al: ‘A deep learning approach to document image quality assessment’. 2014 IEEE Int. Conf. on Image Processing (ICIP), Paris, France, 2014, pp. 25702574.
    22. 22)
      • 39. Yue, G., Hou, C., Gu, K., et al: ‘Analysis of structural characteristics for quality assessment of multiply distorted images’, IEEE Trans. Multimed., 2018, 20, (10), pp. 27222732.
    23. 23)
      • 6. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full reference image quality assessment algorithms’, IEEE Trans. Image Process., 2006, 15, (11), pp. 34403451.
    24. 24)
      • 71. Usher, D., Himaga, M., Dumskyj, M., et al: ‘Automated assessment of digital fundus image quality using detected vessel area’. Proc. of Medical Image Understanding and Analysis, Sheffield, UK, 2003, pp. 8184.
    25. 25)
      • 56. Fraz, M., Remagnino, P., Hoppe, A., et al: ‘Quantification of blood vessel calibre in retinal images of multiethnic school children using a model based approach’, Comput. Med. Imaging Graph., 2013, 37, (1), pp. 4860.
    26. 26)
      • 99. Crete, F., Dolmiere, T., Ladret, P., et al: ‘The blur effect: perception and estimation with a new no-reference perceptual blur metric’, in ‘Human vision and electronic imaging XII’, vol. 6492, (International Society for Optics and Photonics, 2007), p. 64920I.
    27. 27)
      • 72. Fleming, A.D., Philip, S., Goatman, K.A., et al: ‘Automated assessment of diabetic retinal image quality based on clarity and field definition’, Invest. Ophthalmol. Visual Sci., 2006, 47, (3), pp. 11201125.
    28. 28)
      • 105. Shimahara, T., Okatani, T., Deguchi, K.: ‘Contrast enhancement of fundus images using regional histograms for medical diagnosis’. SICE 2004 Annual Conf., Sapporo, Japan, 2004, vol. 1, pp. 650653.
    29. 29)
      • 88. Mahapatra, D., Roy, P.K., Sedai, S., et al: ‘A cnn based neurobiology inspired approach for retinal image quality assessment’. 2016 IEEE 38th Annual Int. Conf. of the Engineering in Medicine and Biology Society (EMBC), Orlando, USA, 2016, pp. 13041307.
    30. 30)
      • 49. Dias, J.M.P., Oliveira, C.M., da Silva Cruz, L.A.: ‘Retinal image quality assessment using generic image quality indicators’, Inf. Fusion, 2014, 19, pp. 7390.
    31. 31)
      • 14. Xue, W., Zhang, L., Mou, X., et al: ‘Gradient magnitude similarity deviation: A highly efficient perceptual image quality index’, IEEE Trans. Image Process., 2014, 23, (2), pp. 684695.
    32. 32)
      • 67. Sivaswamy, J., Krishnadas, S., Chakravarty, A., et al: ‘A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis’, JSM Biomed. Imaging Data Papers, 2015, 2, (1), p. 1004.
    33. 33)
      • 95. Zana, F., Klein, J.-C.: ‘Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation’, IEEE Trans. Image Process., 2001, 10, (7), pp. 10101019.
    34. 34)
      • 28. Kim, J., Lee, S.: ‘Fully deep blind image quality predictor’, IEEE. J. Sel. Top. Signal. Process., 2017, 11, (1), pp. 206220.
    35. 35)
      • 51. Odstrcilik, J., Kolar, R., Budai, A., et al: ‘Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database’, IET Image Process., 2013, 7, (4), pp. 373383.
    36. 36)
      • 47. Ruderman, D.L.: ‘The statistics of natural images’, Netw., Comput. Neural Syst., 1994, 5, (4), pp. 517548.
    37. 37)
      • 53. Ortega, M., Barreira, N., Novo, J., et al: ‘Sirius: a web-based system for retinal image analysis’, Int. J. Med. Inform., 2010, 79, (10), pp. 722732.
    38. 38)
      • 87. Shao, F., Yang, Y., Jiang, Q., et al: ‘Automated quality assessment of fundus images via analysis of illumination, naturalness and structure’, IEEE. Access., 2018, 6, pp. 806817.
    39. 39)
      • 7. Wang, Z., Bovik, A.C., Sheikh, H.R., et al: ‘Image quality assessment: from error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13, (4), pp. 600612.
    40. 40)
      • 45. Cosman, P.C., Gray, R.M., Olshen, R.A.: ‘Evaluating quality of compressed medical images: Snr, subjective rating, and diagnostic accuracy’, Proc. IEEE, 1994, 82, (6), pp. 919932.
    41. 41)
      • 94. Al-Rawi, M., Qutaishat, M., Arrar, M.: ‘An improved matched filter for blood vessel detection of digital retinal images’, Comput. Biol. Med., 2007, 37, (2), pp. 262267.
    42. 42)
      • 98. Yu, H., Barriga, S., Agurto, C., et al: ‘Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy’, in ‘Medical imaging 2012: computer-aided diagnosis’, vol. 8315, (International Society for Optics and Photonics, 2012), p. 83151B.
    43. 43)
      • 100. Swain, M.J., Ballard, D.H.: ‘Color indexing’, Int. J. Comput. Vis., 1991, 7, (1), pp. 1132.
    44. 44)
      • 97. Bay, H., Tuytelaars, T., Van Gool, L.: ‘Surf: speeded up robust features’. European Conf. on computer vision, Graz, Austria, 2006, pp. 404417.
    45. 45)
      • 4. Ninassi, A., Patrick, L.C., Autrusseau, F.: ‘Pseudo no reference image quality metric using perceptual data hiding’, in ‘Human vision and electronic imaging XI’, vol. 6057, (International Society for Optics and Photonics, 2006), p. 60570G.
    46. 46)
      • 30. Kang, L., Ye, P., Li, Y., et al: ‘Convolutional neural networks for no-reference image quality assessment’. Proc. of the IEEE Conf. on computer vision and pattern recognition, Columbus, USA, 2014, pp. 17331740.
    47. 47)
      • 31. Bosse, S., Maniry, D., Müller, K.-R., et al: ‘Deep neural networks for no-reference and full-reference image quality assessment’, IEEE Trans. Image Process., 2018, 27, (1), pp. 206219.
    48. 48)
      • 37. Chandler, Damon M.: ‘Seven Challenges in Image Quality Assessment: Past, Present, and Future Research’, ISRN Signal Processing, 2013, vol. 2013, Article ID 905685, 53 pages, https://doi.org/10.1155/2013/905685.
    49. 49)
      • 79. Pires, R., Jelinek, H.F., Wainer, J., et al: ‘Retinal image quality analysis for automatic diabetic retinopathy detection’. 2012 25th SIBGRAPI Conf. on Graphics, Patterns and Images (SIBGRAPI), Ouro Preto, Brazil, 2012, pp. 229236.
    50. 50)
      • 57. Decencière, E., Zhang, X., Cazuguel, G., et al: ‘Feedback on a publicly distributed database: the messidor database’, Image Anal. Stereol., 2014, 33, (3), pp. 231234.
    51. 51)
      • 64. Niemeijer, M., Van Ginneken, B., Cree, M.J., et al: ‘Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs’, IEEE Trans. Med. Imaging, 2010, 29, (1), pp. 185195.
    52. 52)
      • 42. Yue, G., Hou, C., Gu, K., et al: ‘Biologically inspired blind quality assessment of tone-mapped images’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 25252536.
    53. 53)
      • 63. Decencière, E., Cazuguel, G., Zhang, X., et al: ‘Teleophta: machine learning and image processing methods for teleophthalmology’, Irbm, 2013, 34, (2), pp. 196203.
    54. 54)
      • 75. Nugroho, H.A., Yulianti, T., Setiawan, N.A., et al: ‘Contrast measurement for no-reference retinal image quality assessment’. 2014 6th Int. Conf. on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2014, pp. 14.
    55. 55)
      • 80. Yu, H., Agurto, C., Barriga, S., et al: ‘Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening’. 2012 IEEE southwest symp. on Image analysis and interpretation (SSIAI), Rochester, USA, 2012, pp. 125128.
    56. 56)
      • 109. Zhou, M., Jin, K., Wang, S., et al: ‘Color retinal image enhancement based on luminosity and contrast adjustment’, IEEE Trans. Biomed. Eng., 2018, 65, (3), pp. 521527.
    57. 57)
      • 17. Gu, K., Zhai, G., Lin, W., et al: ‘The analysis of image contrast: from quality assessment to automatic enhancement’, IEEE Trans. Cybernet., 2016, 46, (1), pp. 284297.
    58. 58)
      • 73. Hunter, A., Lowell, J.A., Habib, M., et al: ‘An automated retinal image quality grading algorithm’. 2011 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, EMBC, Boston, USA, 2011, pp. 59555958.
    59. 59)
      • 66. Carmona, E.J., Rincón, M., García-Feijoó, J., et al: ‘Identification of the optic nerve head with genetic algorithms’, Artif. Intell. Med., 2008, 43, (3), pp. 243259.
    60. 60)
      • 12. Sheikh, H.R., Bovik, A.C.: ‘A visual information fidelity approach to video quality assessment’, 2005, pp. 2325.
    61. 61)
      • 27. Bosse, S., Maniry, D., Wiegand, T., et al: ‘A deep neural network for image quality assessment’. 2016 IEEE Int. Conf. on Image Processing (ICIP), Phoenix, USA, September 2016, pp. 37733777.
    62. 62)
      • 43. Yue, G., Hou, C., Jiang, Q., et al: ‘Blind stereoscopic 3d image quality assessment via analysis of naturalness, structure, and binocular asymmetry’, Signal Process., 2018, 150, pp. 204214.
    63. 63)
      • 22. Saad, M.A., Bovik, A.C., Charrier, C.: ‘Blind image quality assessment: A natural scene statistics approach in the dct domain’, IEEE Trans. Image Process., 2012, 21, (8), pp. 33393352.
    64. 64)
      • 3. Lévêque, L., Liu, H., Baraković, S., et al: ‘On the subjective assessment of the perceived quality of medical images and videos’. 2018 Tenth Int. Conf. on Quality of Multimedia Experience (QoMEX), Cagliari, Italy, 2018, pp. 16.
    65. 65)
      • 92. Hunter, A., Lowell, J., Ryder, R., et al: ‘Tram-line filtering for retinal vessel segmentation’. 3rd European Medical and Biological Engineering Conf., Prague, Czech Republic, November 2005.
    66. 66)
      • 38. Kim, J., Zeng, H., Ghadiyaram, D., et al: ‘Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment’, IEEE Signal Process. Mag., 2017, 34, (6), pp. 130141.
    67. 67)
      • 102. Joshi, G.D., Sivaswamy, J.: ‘Colour retinal image enhancement based on domain knowledge’. Sixth Indian Conf. on Computer Vision, Graphics & Image Processing, 2008. ICVGIP'08, Bhubaneswar, India, 2008, pp. 591598.
    68. 68)
      • 107. Lu, C.-Y., Jing, B.-Z., Chan, P.P., et al: ‘Vessel enhancement of low quality fundus image using mathematical morphology and combination of gabor and matched filter’. 2016 Int. Conf. on Wavelet Analysis and Pattern Recognition (ICWAPR), Jeju, South Korea, 2016, pp. 168173.
    69. 69)
      • 36. Mohammadi, P., Ebrahimi-Moghadam, A., Shirani, S.: ‘Subjective and objective quality assessment of image: A survey’, arXiv preprint arXiv:1406.7799, 2014.
    70. 70)
      • 5. Le Callet, P., Autrusseau, F.: ‘Subjective quality assessment IRCCYN/IVC database’, 2005. Available at http://www.irccyn.ec-nantes.fr/ivcdb/.
    71. 71)
      • 10. Engelke, U., Kusuma, M., Zepernick, H.-J., et al: ‘Reduced-reference metric design for objective perceptual quality assessment in wireless imaging’, Signal Process., Image Commun., 2009, 24, (7), pp. 525547.
    72. 72)
      • 33. Gu, K., Zhai, G., Yang, X., et al: ‘Deep learning network for blind image quality assessment’. 2014 IEEE Int. Conf. on Image Processing (ICIP), Paris, France, 2014, pp. 511515.
    73. 73)
      • 61. Giancardo, L., Meriaudeau, F., Karnowski, T.P., et al: ‘Exudate-based diabetic macular edema detection in fundus images using publicly available datasets’, Med. Image Anal., 2012, 16, (1), pp. 216226.
    74. 74)
      • 85. Yao, Z., Zhang, Z., Xu, L.-Q., et al: ‘Generic features for fundus image quality evaluation’. 2016 IEEE 18th Int. Conf. on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 2016, pp. 16.
    75. 75)
      • 8. Ponomarenko, N., Battisti, F., Egiazarian, K., et al: ‘Metrics performance comparison for color image database’. Fourth int. workshop on video processing and quality metrics for consumer electronics, Scottsdale, USA, 2009, vol. 27.
    76. 76)
      • 52. Staal, J., Abràmoff, M.D., Niemeijer, M., et al: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    77. 77)
      • 90. Himaga, M., Usher, D., Boyce, J.F.: ‘Retinal blood vessel extraction by using multi-resolution matched filtering and directional region growing segmentation’. IAPR workshop on machine vision applications, Nara, Japan, 2002, pp. 244247.
    78. 78)
      • 103. Fadzil, M.A., Nugroho, H.A., Nugroho, H., et al: ‘Contrast enhancement of retinal vasculature in digital fundus image’. 2009 Int. Conf. on Digital Image Processing, Bangkok, Thailand, 2009, pp. 137141.
    79. 79)
      • 48. Kaggle: ‘Diabetic retinopathy detection’, 2013. Available at https://www.kaggle.com/c/diabeticretinopathy-detection, accessed 10 June 2017.
    80. 80)
      • 76. Niemeijer, M., Abràmoff, M.D., van Ginneken, B.: ‘Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening’, Med. Image Anal., 2006, 10, (6), pp. 888898.
    81. 81)
      • 13. Zhang, L., Zhang, L., Mou, X., et al: ‘Fsim: a feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
    82. 82)
      • 91. Sinthanayothin, C., Boyce, J.F., Cook, H.L., et al: ‘Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images’, Br. J. Ophthalmol., 1999, 83, (8), pp. 902910.
    83. 83)
      • 106. Ab Rahim, H., Ibrahim, A.S., Zaki, W.M.D.W., et al: ‘Methods to enhance digital fundus image for diabetic retinopathy detection’. 2014 IEEE 10th Int. Colloquium on Signal Processing & its Applications (CSPA), Kuala Lumpur, Malaysia, 2014, pp. 221224.
    84. 84)
      • 89. Yu, F., Sun, J., Li, A., et al: ‘Image quality classification for dr screening using deep learning’. 2017 39th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, South Korea, July 2017, pp. 664667.
    85. 85)
      • 86. Wang, S., Jin, K., Lu, H., et al: ‘Human visual system-based fundus image quality assessment of portable fundus camera photographs’, IEEE Trans. Med. Imaging, 2016, 35, (4), pp. 10461055.
    86. 86)
      • 21. Narwaria, M., Lin, W., McLoughlin, I.V., et al: ‘Fourier transform-based scalable image quality measure’, IEEE Trans. Image Process., 2012, 21, (8), pp. 33643377.
    87. 87)
      • 2. Stange, I.W., Ford, C.G., McFarland, M.A.: ‘Subjective video quality assessment methods for recognition tasks’, Proc. SPIE, 2009, 7240, pp. 72407240.
    88. 88)
      • 82. Yin, F., Wong, D.W.K., Yow, A.P., et al: ‘Automatic retinal interest evaluation system (aries)’. 2014 36th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, USA, 2014, pp. 162165.
    89. 89)
      • 29. Kim, J., Nguyen, A.-D., Lee, S.: ‘Deep cnn-based blind image quality predictor’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 30, (1), pp. 114.
    90. 90)
      • 44. Yue, G., Hou, C., Gu, K., et al: ‘Combining local and global measures for dibr-synthesized image quality evaluation’, IEEE Trans. Image Process., 2019, 28, (4), pp. 20752088.
    91. 91)
      • 55. Al-Diri, B., Hunter, A., Steel, D., et al: ‘A reference data set for retinal vessel profiles’. 30th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008, Vancouver, Canada, 2008, pp. 22622265.
    92. 92)
      • 18. Li, Q., Wang, Z.: ‘Reduced-reference image quality assessment using divisive normalization-based image representation’, IEEE. J. Sel. Top. Signal. Process., 2009, 3, (2), pp. 202211.
    93. 93)
      • 108. Farooq, U., Sattar, N.Y.: ‘Improved automatic localization of optic disc in retinal fundus using image enhancement techniques and svm’. 2015 IEEE Int. Conf. on Control System, Computing and Engineering (ICCSCE), George Town, Malaysia, 2015, pp. 532537.
    94. 94)
      • 41. Yang, H., Fang, Y., Lin, W.: ‘Perceptual quality assessment of screen content images’, IEEE Trans. Image Process., 2015, 24, (11), pp. 44084421.
    95. 95)
      • 60. Prentasic, P., Loncaric, S., Vatavuk, Z., et al: ‘Diabetic retinopathy image database (dridb): a new database for diabetic retinopathy screening programs research’. 2013 8th Int. Symp. on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 2013, pp. 711716.
    96. 96)
      • 16. Mou, X., Zhang, M., Xue, W.: ‘Reduced reference image quality assessment based on statistics of edge’, Proc. SPIE, 2011, 7876, pp. 78767876.
    97. 97)
      • 77. Giancardo, L., Abràmoff, M.D., Chaum, E., et al: ‘Elliptical local vessel density: a fast and robust quality metric for retinal images’. 30th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, 2008. EMBS 2008, Vancouver, Canada, 2008, pp. 35343537.
    98. 98)
      • 25. Mittal, A., Soundararajan, R., Bovik, A.C.: ‘Making a completely blind image quality analyzer’, IEEE Signal Process. Lett., 2013, 20, (3), pp. 209212.
    99. 99)
      • 70. Lalonde, M., Gagnon, L., Boucher, M.-C.: ‘Automatic visual quality assessment in optical fundus images’. Proc. of vision interface, Ottawa, 2001, vol. 32, pp. 259264.
    100. 100)
      • 23. Moorthy, A.K., Bovik, A.C.: ‘Blind image quality assessment: from natural scene statistics to perceptual quality’, IEEE Trans. Image Process., 2011, 20, (12), pp. 33503364.
    101. 101)
      • 81. Katuwal, G.J., Kerekes, J., Ramchandran, R., et al: ‘Automatic fundus image field detection and quality assessment’. 2013 IEEE Western New York Image Processing Workshop (WNYIPW), Rochester, USA, 2013, pp. 913.
    102. 102)
      • 74. Köhler, T., Budai, A., Kraus, M.F., et al: ‘Automatic no-reference quality assessment for retinal fundus images using vessel segmentation’. 2013 IEEE 26th Int. Symp. on Computer-Based Medical Systems (CBMS), Porto, Portugal, 2013, pp. 95100.
    103. 103)
      • 83. Davis, H., Russell, S., Barriga, E., et al: ‘Vision-based, realtime retinal image quality assessment’. 22nd IEEE Int. Symp. on Computer-Based Medical Systems, 2009. CBMS 2009, Albuquerque, USA, 2009, pp. 16.
    104. 104)
      • 78. Paulus, J., Meier, J., Bock, R., et al: ‘Automated quality assessment of retinal fundus photos’, Int. J. Comput. Assist. Radiol. Surg., 2010, 5, (6), pp. 557564.
    105. 105)
      • 65. Fumero, F., Alayón, S., Sanchez, J., et al: ‘Rimone: An open retinal image database for optic nerve evaluation’. 2011 24th Int. Symp. on Computer- Based Medical Systems (CBMS), Bristol, UK, 2011, pp. 16.
    106. 106)
      • 15. Wang, Z., Simoncelli, E.P.: ‘Reduced-reference image quality assessment using a wavelet-domain natural image statistic model’, in ‘Human vision and electronic imaging X’, vol. 5666, (International Society for Optics and Photonics, 2005), pp. 149160.
    107. 107)
      • 104. Noronha, K., Nayak, J., Bhat, S.: ‘Enhancement of retinal fundus image to highlight the features for detection of abnormal eyes’. TENCON 2006. 2006 IEEE Region 10 Conf., Hong Kong, 2006, pp. 14.
    108. 108)
      • 54. Hoover, A., Kouznetsova, V., Goldbaum, M.: ‘Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210.
    109. 109)
      • 24. Mittal, A., Moorthy, A.K., Bovik, A.C.: ‘No-reference image quality assessment in the spatial domain’, IEEE Trans. Image Process., 2012, 21, (12), pp. 46954708.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6212
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6212
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address