http://iet.metastore.ingenta.com
1887

Robust long-term correlation tracking with multiple models

Robust long-term correlation tracking with multiple models

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To address the challenge of repetitive target appearance variation and frequent occlusion, existing visual tracking methods either handle corrupted samples or correct the appearance model. In this study, the authors propose a novel framework that successfully combines these two strategies. In their method, the base tracker is an improved discriminative correlation filter-based tracker, in which an independent classifier is employed to alleviate the problem of corrupted samples; the best model is selected for improvement from a group of models, which they call a ‘model colony’. The model colony is composed of models updated via different processes. The correlation output and the peak-to-sidelobe ratio are used to evaluate each model in the model colony. In addition, they propose a novel criterion called the maximum-to-others ratio for superior model selection. Experiments on 80 challenging sequences show that their tracker outperforms state-of-the-art trackers. In addition, experimental results demonstrate that their formulation significantly improves the performance of their base tracker.

References

    1. 1)
      • 1. Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv., 2006, 38, (4), pp. 1332.
    2. 2)
      • 2. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., et al: ‘Visual tracking: an experimental survey’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (7), pp. 14421468.
    3. 3)
      • 3. Danelljan, M., Häger, G., Khan, F.S., et al: ‘Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 14301438.
    4. 4)
      • 4. Bolme, D.S., Beveridge, J.R., Draper, B.A., et al: ‘Visual object tracking using adaptive correlation filters’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 25442550.
    5. 5)
      • 5. Kalal, Z., Matas, J., Mikolajczyk, K.: ‘P-N learning: bootstrapping binary classifiers by structural constraints’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 4956.
    6. 6)
      • 6. Kalal, Z., Mikolajczyk, K., Matas, J.: ‘Tracking learning detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 14091422.
    7. 7)
      • 7. Hong, Z., Chen, Z., Wang, C., et al: ‘Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 749758.
    8. 8)
      • 8. Ma, C., Yang, X., Zhang, C., et al: ‘Long-term correlation tracking’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 53885396.
    9. 9)
      • 9. Bertinetto, L., Valmadre, J., Golodetz, S., et al: ‘Staple: complementary learners for real-time tracking’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 14011409.
    10. 10)
      • 10. Gao, J., Ling, H., Hu, W., et al: ‘Transfer learning based visual tracking with Gaussian processes regression’. Proc. European Conf. on Computer Vision, Zurich, Switzerland, September 2014, pp. 188203.
    11. 11)
      • 11. Supancic, J.S., Ramanan, D.: ‘Self-paced learning for long-term tracking’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, USA, June 2013, pp. 23792386.
    12. 12)
      • 12. Henriques, J., Caseiro, R., Martins, P., et al: ‘High-speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 583596.
    13. 13)
      • 13. Zhang, J., Ma, S., Sclaroff, S.: ‘MEEM: robust tracking via multiple experts using entropy minimization’. Proc. European Conf. on Computer Vision, Zurich, Switzerland, September 2014, pp. 188203.
    14. 14)
      • 14. Ozuysal, M., Fua, P., Lepetit, V.: ‘Fast keypoint recognition in ten lines of code’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2007, pp. 18.
    15. 15)
      • 15. Wu, Y., Lim, J., Yang, M.H.: ‘Object tracking benchmark’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (9), pp. 18341848.
    16. 16)
      • 16. Kristan, M., Leonardis, A., Matas, J., et al: ‘The visual object tracking VOT2016 challenge results’. Proc. European Conf. on Computer Vision, Amsterdam, The Netherlands, October 2016, pp. 777823.
    17. 17)
      • 17. Wu, Y., Lim, J., Yang, M.H.: ‘Online object tracking: a benchmark’. Proc. Conf. on Computer Vision and Pattern Recognition, Portland, USA, June 2013, pp. 24112418.
    18. 18)
      • 18. Danelljan, M., Häger, G., Khan, F., et al: ‘Accurate scale estimation for robust visual tracking’. Proc. British Machine Vision Conf., Nottingham, UK, September 2014.
    19. 19)
      • 19. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘Exploiting the circulant structure of tracking-by-detection with kernels’. Proc. European Conf. on Computer Vision, Florence, Italy, November 2012, pp. 702715.
    20. 20)
      • 20. Lee, D.Y., Sim, J.Y., Kim, C.S.: ‘Multihypothesis trajectory analysis for robust visual tracking’. Proc. Conf. on Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 50885096.
    21. 21)
      • 21. Hu, Z., Gao, Y., Wang, D., et al: ‘A universal update-pacing framework for visual tracking’. Proc. IEEE Int. Conf. on Image Processing, Phoenix, USA, September 2016.
    22. 22)
      • 22. Zhang, K.H., Zhang, L., Liu, Q.S., et al: ‘Fast visual tracking via dense spatio-temporal context learning’. Proc. European Conf. on Computer Vision, Zürich, Switzerland, September 2014, pp. 127141.
    23. 23)
      • 23. Rifkin, R., Yeo, G., Poggio, T.: ‘Regularized least-squares classification’. Nato Sci. Ser. Sub Ser. III Comput. Syst. Sci., 2003, 190, pp. 131154.
    24. 24)
      • 24. Schölkopf, B., Smola, A.: ‘Learning with kernels: support vector machines, regularization, optimization, and beyond’ (MIT Press, Cambridge, MA, USA, 2002, 1st edn.).
    25. 25)
      • 25. Dollar, P., Appel, R., Belongie, S., et al: ‘Fast feature pyramids for object detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (8), pp. 15321545.
    26. 26)
      • 26. Everingham, M., Gool, L.V., Williams, C.K.I., et al: ‘The Pascal visual object classes (VOC) challenge’, Int. J. Comput. Vis., 2010, 88, (2), pp. 303338.
    27. 27)
      • 27. Li, Y., Zhu, J., Hoi, S.C.: ‘Reliable patch trackers: robust visual tracking by exploiting reliable patches’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 353361.
    28. 28)
      • 28. Ma, C., Huang, J.B., Yang, X., et al: ‘Hierarchical convolutional features for visual tracking’. Proc. IEEE Int. Conf. on Computer Vision, Santiago, Chile, December 2015, pp. 30743082.
    29. 29)
      • 29. Li, Y., Zhu, J.K.: ‘A scale adaptive kernel correlation filter tracker with feature integration’. Proc. European Conf. on Computer Vision, Zürich, Switzerland, September 2014, pp. 254265.
    30. 30)
      • 30. Danelljan, M., Häger, G., Shahbaz Khan, F., et al: ‘Learning spatially regularized correlation filters for visual tracking’. Proc. IEEE Int. Conf. on Computer Vision, Santiago, Chile, December 2015, pp. 43104318.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.6209
Loading

Related content

content/journals/10.1049/iet-ipr.2018.6209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address