access icon free Hybrid CBIR method using statistical, DWT-Entropy and POPMV-based feature sets

Content-based image retrieval (CBIR) is an image retrieval technique that can retrieve images by matching its feature set values. This research focuses on a novel CBIR method namely hybrid CBIR method using statistical, Discrete Wavelet Transform (DWT)-Entropy and Peak-oriented Octal Pattern-derived Majority Voting (POPMV)-based feature sets (CBIR_SWPOPMV) to efficiently extract the relevant colour images from the colour image dataset. The doctrine of the proposed method is influenced by a novel texture descriptor namely POPMV which is an octal pattern based on the histogram peak information, to bring about a majority voting-based feature set and three histogram-based feature sets. Furthermore, to improve the retrieval accuracy, the DWT-based Entropy feature set and the statistical feature set are also included. Finally, the Euclidean distance-based matching process brings more favourable relevant images with respect to the query image. The proposed methodology is experimentally compared with the existing recent CBIR versions by using seven standard databases such as Corel-1k, USPTex, MIT-VisTex, KTH-TIPS, KTH-TIPS2a, KTH-TIPS2a, Colored Brodatz and a user-contributed database named DB_VEG.

Inspec keywords: image texture; entropy; statistical analysis; discrete wavelet transforms; feature extraction; image retrieval; image matching

Other keywords: Colored Brodatz databases; USPTex databases; Euclidean distance-based matching process; histogram peak information; POPMV-based feature sets; texture descriptor; KTH-TIPS2a databases; hybrid CBIR_SWPOPMV method; query imaging; histogram-based feature sets; DB_VEG user-contributed database; MIT-VisTex databases; Corel-1k databases; KTH-TIPS databases; colour image dataset; content-based image retrieval technique; DWT-based entropy; peak-oriented octal pattern-derived majority voting; statistical feature set analysis; discrete wavelet transform-entropy; image matching

Subjects: Integral transforms; Computer vision and image processing techniques; Other topics in statistics; Image recognition; Other topics in statistics; Integral transforms

References

    1. 1)
      • 10. Persoon, E., Fu, K.: ‘Shape discrimination using Fourier descriptors’, IEEE Trans. Syst. Man Cybern., 1997, 7, (3), pp. 170179.
    2. 2)
      • 29. Yadav, O., Suryawanshi, V.: ‘CBIR evaluation using different distances and DWT’, Int. J. Comput. Appl., 2014, 93, (16), pp. 3640.
    3. 3)
      • 32. Georgieva, L., Dimitrova, T., Angelov, N.: ‘RGB and HSV color models in color identification of digital traumas images’. Int. Conf. on computer systems and Technology – CompSys Tech., Technical University, Varna, Bulgaria, 2005.
    4. 4)
      • 40. Husain, S., Bober, M.: ‘Improving large-scale image retrieval through robust aggregation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (9), pp. 17831796.
    5. 5)
      • 11. Zhang, D., Lu, G.: ‘Evaluation of MPEG-7 shape descriptors against other shape descriptors’, Multimedia Syst.., 2003, 9, (1), pp. 1530.
    6. 6)
      • 39. Selvarasu, N., Nachiappan, A., Nandhitha, N.M.: ‘Euclidean distance based color image segmentation of abnormality detection from pseudo color thermographs’, Int. J. Comput. Theory Eng., 2010, 2, (4), pp. 514516.
    7. 7)
      • 2. Smeulders, A.W.M., Santini, S., Gupta, A., et al: ‘Content-based image retrieval at the end of the early years’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (12), pp. 13491380.
    8. 8)
      • 19. Ptino-Escarcina, R.E., Costa, J.A.F.: ‘Content based image retrieval using a descriptors hierarchy’. Proc. IEEE Seventh Int. Conf. on Hybrid Intelligent Sys., Kaiserlautern, Germany, 2007, pp. 228233.
    9. 9)
      • 31. HSV color space’. Available at: http:en.wikipedia.org/wiki/List-of-Color-space-and-their-uses-HSV-and-HSL (accessed 27 January 2018).
    10. 10)
      • 27. Shi, L., Wang, H., Meng, J., et al: ‘Optimizing top precision performance measure of content based image retrieval by learning similarity function’. 23rd Int. Conf. on Pattern Recognition (ICPR), IEEE Conf., Cancun, Mexico, 2016, pp. 29542958.
    11. 11)
      • 17. Bian, W., Tao, D.: ‘Biased Discriminant Euclidean Embedding for content-based image retrieval’, IEEE Trans. Image Process., 2010, 19, (19), pp. 545551.
    12. 12)
      • 5. Dubey, S.R., Singh, S.K., Singh, R.K.: ‘Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval’, IEEE. J. Biomed. Health. Inform., 2016, 20, (4), pp. 11391147.
    13. 13)
      • 6. Li, Y., Zhang, D., Lu, G., et al: ‘A survey of content based image retrieval with high-level semantics’, Pattern Recognit., 2007, 40, (1), pp. 262282.
    14. 14)
      • 4. Lai, C.-C., Chen, Y.-C.: ‘A user-oriented image retrieval system based on interactive genetic algorithm’, IEEE Trans. Instrum. Meas., 2011, 60, (10), pp. 33183325.
    15. 15)
      • 42. Backes, A.R., Casanova, D., Bruno, O.M.: ‘Color texture analysis based on fractal descriptors’, Pattern Recognit., 2012, 45, (5), pp. 19841992.
    16. 16)
      • 7. Sikora, T.: ‘The MPEG-7 visual standard for content description – an overview’, IEEE Trans. Circuits Syst. Video Technol., 2001, 11, (6), pp. 696702.
    17. 17)
      • 43. MIT vision and modeling group, Cambridge’. Available at: http://vismod.media.mit.edu/pub/ (accessed 20 Feb 2018).
    18. 18)
      • 22. Liu, G.-H., Li, Z.-Y., Zhang, L., et al: ‘Image retrieval based micro structure descriptor’, Pattern Recognit., 2011, 44, (9), pp. 21232133.
    19. 19)
      • 20. Moghddam, A., Khajoie, T., Rouhi, A.: ‘Wavelet correlogram: a new approach for image index retrieval’, Pattern Recognit., 2005, 38, pp. 25062518.
    20. 20)
      • 34. YCbcr color space’. Available at: http:en.wikipedia.org/wiki/YCbCr (accessed 27 January 2018).
    21. 21)
      • 36. Flicker, M., Sawhney, H., Niblack, W., et al: ‘Query by image and video content: the QBIC system’, IEEE Comput., 1995, 28, (9), pp. 2332.
    22. 22)
      • 25. Fadaei, S., Amirfattahi, R., Ahmadzadeh, M.R.: ‘A new content-based image retrieval system based on optimized integration of DCD, wavelet and curvelet features’, IET Image Process., 2016, 11, (2), pp. 8998.
    23. 23)
      • 15. Sujatha, B., Kumar, V., Harini, P.: ‘A new logical compact LBP co-occurrence matrix for texture analysis’, Int. J. Sci. Eng. Res., 2012, 3, (2), pp. 15.
    24. 24)
      • 9. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multi resolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    25. 25)
      • 33. Foley, J.D., Dam, A.V., Feiner, J.F.: ‘Hughes, computer graphics: principles and practice’ (Addison-Wesley, Boston, MA, USA, 1990, 2nd edn.).
    26. 26)
      • 38. Khosla, G., Rajpal, N., Singh, J.: ‘Evaluation of Euclidean and Manhattan metrics in content based image retrieval system’, J. Eng. Res. Appl., 2014, 4, (9), pp. 4349.
    27. 27)
      • 8. Abbadeni, N.: ‘Computational perceptual features for texture representation and retrieval’, IEEE Trans. Image Process., 2011, 20, (1), pp. 236246.
    28. 28)
      • 18. Liu, G.-H., Yang, J.-Y.: ‘Image retrieval based on the texton co-occurrence matrix’, Pattern Recognit., 2008, 41, (12), pp. 35213527.
    29. 29)
      • 30. Color space types’. Available at: http:en.wikipedia.org/wiki/Color-Space (accessed 20 Feb 2018).
    30. 30)
      • 37. Stricker, O.: ‘Similarity of color changes’. SPIE Storage and Retrieval for Image and Video Database III, San Jose, USA, 1995, vol. 2185, pp. 381392.
    31. 31)
      • 35. Color space’. Available at: www.Compression.ru/download/articles/Color-space/ch03.pdf (accessed 02 February 2018).
    32. 32)
      • 14. Guo, J.-M., Prasetyo, H., Chen, J.-H.: ‘Content- based image retrieval using error diffusion block truncation coding features’, IEEE Trans. Circ. Syst. Video Technol., 2015, 25, (3), pp. 466481.
    33. 33)
      • 46. Mlik, F., Baharudin, B.: ‘Analysis of distance metrics in content based image retrieval using statistical quantized histogram texture features in the DCT domains’, J. King Saud Univ., Comput. Inf. Sci., 2013, 25, (2), pp. 207208.
    34. 34)
      • 26. Zhu, L., Shen, J., Xie, L., et al: ‘Unsupervised visual hashing with semantic assistant for content-based image retrieval’, IEEE Trans. Knowl. Data Eng., 2017, 29, (2), pp. 472486.
    35. 35)
      • 16. Kwitt, R., Meerwald, P., Uhi, A.: ‘Efficient texture image retrieval using Copulas Bayesian Framework’, IEEE Trans. Image Process., 2011, 20, (7), pp. 20632077.
    36. 36)
      • 12. Latecki, L.J., Lakamper, R., Eckhardt, T.: ‘Shape descriptors for non-rigid shapes with a single closed contour’, IEEE Conf. Comput. Vis. Pattern Recognit., 2000, 1, pp. 424429.
    37. 37)
      • 24. Wang, Y., Shi, M., You, S., et al: ‘DCT inspired feature transform for image retrieval and reconstruction’, IEEE Trans. Image Process., 2016, 25, (9), pp. 44084418.
    38. 38)
      • 23. Liu, Q., Huang, Y., Metaxas, D.N.: ‘Hypergraph with sampling for image retrieval’, Pattern Recognit., 2011, 44, (10–11), pp. 22552262.
    39. 39)
      • 3. Dubey, S.R., Singh, S.K., Singh, R.K.: ‘Multichannel decoded local binary patterns for content based image retrieval’, IEEE Trans. Image Process., 2016, 25, (9), pp. 40184032.
    40. 40)
      • 21. Qi, X., Han, Y.: ‘A novel fusion approach to content-based image retrieval’, Pattern Recognit., 2005, 38, pp. 24492465.
    41. 41)
      • 13. Tang, J., Li, Z., Wang, M., et al: ‘Neighborhood discriminant hashing for large-scale image retrieval’, IEEE Trans. Image Process., 2015, 24, (9), pp. 28272840.
    42. 42)
      • 44. KTH-TIPS texture image database’, online Available at: http://www.nada.kth.se/cvap/databases/kth-tips/index.html (accessed 20 Feb 2018).
    43. 43)
      • 28. Mistry, Y.D., Ingole, D.T.: ‘Content-based image retrieval using DWT based feature extraction and texture, shape and color features’, Int. J. Res. Comput. Commun. Technol., 2014, 3, (11), pp. 15101516.
    44. 44)
      • 1. Furht, B.: ‘Handbook of multimedia computing’ (CRC Press, Boca Raton, USA), p. 228.
    45. 45)
      • 41. Corel photo collection image database’. Available at: http://wang.ist.psu.edu/docs/realted/ (accessed 20 February 2018).
    46. 46)
      • 45. Colored Brodatz database’. Available at: http://multibandtexture.recherche.usherbrooke.ca/colored%20_brodatz.html (accessed 20 Feb 2018).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5797
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5797
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading