http://iet.metastore.ingenta.com
1887

Comparison of level set models in image segmentation

Comparison of level set models in image segmentation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Image segmentation is one of the most important tasks in modern imaging applications, which leads to shape reconstruction, volume estimation, object detection and classification. One of the most popular active segmentation models is level set models which are used extensively as an important category of modern image segmentation technique with many different available models to tackle different image applications. Level sets are designed to overcome the topology problems during the evolution of curves in their process of segmentation while the previous algorithms cannot deal with this problem effectively. As a result, there is often considerable investigation into the performance of several level set models for a given segmentation problem. It would therefore be helpful to know the characteristics of a range of level set models before applying to a given segmentation problem. In this study, the authors review a range of level set models and their application to image segmentation work and explain in detail their properties for practical use.

References

    1. 1)
      • 1. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331.
    2. 2)
      • 2. Osher, S., Sethian, J.A.: ‘Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations’, J. Comput. Phys., 1988, 79, (1), pp. 1249.
    3. 3)
      • 3. Cremers, D., Rousson, M., Deriche, R.: ‘A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape’, Int. J. Comput. Vis., 2007, 72, (2), pp. 195215.
    4. 4)
      • 4. Jiang, Y., Wang, M., Xu, H.: ‘A survey for region-based level set image segmentation’. 2012 11th Int. Symp. Distributed Computing and Applications to Business, Engineering & Science (DCABES), Guilin, China, 19 October 2012, pp. 413416.
    5. 5)
      • 5. Suri, J.S., Liu, K.: ‘Level set regularizers for shape recovery in medical images’. Proc. 14th IEEE Symp. Computer-Based Medical Systems, Bethesda, USA, 2001, pp. 369374.
    6. 6)
      • 6. Angelini, E., Jin, Y., Laine, A.: ‘State of the art of level set methods in segmentation and registration of medical imaging modalities’, in ‘Handbook of biomedical image analysis’ (Springer, Boston, MA, 2005), pp. 47101.
    7. 7)
      • 7. Burger, M., Osher, S.J.: ‘A survey on level set methods for inverse problems and optimal design’, Eur. J. Appl. Math., 2005, 16, (2), pp. 263301.
    8. 8)
      • 8. Tai, X.C., Chan, T.F.: ‘A survey on multiple level set methods with applications for identifying piecewise constant functions’, Int. J. Numer. Anal. Model., 2004, 1, (1), pp. 2547.
    9. 9)
      • 9. Montagnat, J., Delingette, H., Ayache, N.: ‘A review of deformable surfaces: topology, geometry and deformation’, Image Vis. Comput., 2001, 19, (14), pp. 10231040.
    10. 10)
      • 10. Suri, J.S., Liu, K., Singh, S., et al: ‘Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review’, IEEE Trans. Inf. Technol. Biomed., 2002, 6, (1), pp. 828.
    11. 11)
      • 11. Bhaidasna, Z.C., Mehta, S.: ‘A review on level set method for image segmentation’, Int. J. Comput. Appl., 2013, 63, (11), pp. 2022.
    12. 12)
      • 12. Vineetha, G., Darshan, G.: ‘Level set method for image segmentation: a survey’, IOSR J. Comput. Eng., 2013, 8, pp. 7478.
    13. 13)
      • 13. Osher, S., Fedkiw, R.P.: ‘Level set methods: an overview and some recent results’, J. Comput. Phys.., 2001, 169, (2), pp. 463502.
    14. 14)
      • 14. Vemuri, B.C., Ye, J., Chen, Y., et al: ‘Image registration via level-set motion: applications to atlas-based segmentation’, Med. Image Anal., 2003, 7, (1), pp. 120.
    15. 15)
      • 15. Dong, F., Chen, Z., Wang, J.: ‘A new level set method for inhomogeneous image segmentation’, Image Vis. Comput., 2013, 31, (10), pp. 809822.
    16. 16)
      • 16. Ehrhardt, M.J., Arridge, S.R.: ‘Vector-valued image processing by parallel level sets’, IEEE Trans. Image Process., 2014, 23, (1), pp. 918.
    17. 17)
      • 17. Hu, P., Wu, F., Peng, J., et al: ‘Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets’, Int. J. Comput. Assist. Radiol. Surg., 2017, 12, (3), pp. 399411.
    18. 18)
      • 18. Osher, S., Fedkiw, R.: ‘Implicit functions’, in Osher, S., Fedkiw, R. (Eds.): ‘Level set methods and dynamic implicit surfaces’, (Springer, New York, 2003), pp. 316.
    19. 19)
      • 19. Sethian, J.A.: ‘Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science’ (Cambridge University Press, Cambridge, 1999).
    20. 20)
      • 20. Dale, A.M., Fischl, B., Sereno, M.I.: ‘Cortical surface-based analysis: I. Segmentation and surface reconstruction’, Neuroimage, 1999, 9, (2), pp. 179194.
    21. 21)
      • 21. Siddiqi, M.H., Lee, S., Lee, Y.K.: ‘Object segmentation by comparison of active contour snake and level set in biomedical applications’. 2011 IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM), Atlanta, USA, 12 November 2011, pp. 414417.
    22. 22)
      • 22. Sethian, J.A., Smereka, P.: ‘Level set methods for fluid interfaces’, Annu. Rev. Fluid Mech., 2003, 35, (1), pp. 341372.
    23. 23)
      • 23. Xingfei, G., Jie, T.: ‘An automatic active contour model for multiple objects’. Proc. 16th Int. Conf. Pattern Recognition, ICPR 2002, Quebec City, Canada, 2002, pp. 881884.
    24. 24)
      • 24. Li, C., Liu, J., Fox, M.D.: ‘Segmentation of edge preserving gradient vector flow: an approach toward automatically initializing and splitting of snakes’. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 2005. CVPR 2005, San Diego, USA, 20 June 2005, pp. 162167.
    25. 25)
      • 25. Li, B., Acton, S.T.: ‘Automatic active model initialization via Poisson inverse gradient’, IEEE Trans. Image Process., 2008, 17, (8), pp. 14061420.
    26. 26)
      • 26. Caselles, V., Kimmel, R., Sapiro, G.: ‘Geodesic active contours’, Int. J. Comput. Vis., 1997, 22, (1), pp. 6179.
    27. 27)
      • 27. Malladi, R., Sethian, J.A., Vemuri, B.C.: ‘Shape modeling with front propagation: a level set approach’, IEEE Trans. Pattern Anal. Mach. Intell., 1995, 17, (2), pp. 158175.
    28. 28)
      • 28. Leventon, M.E., Grimson, W.E., Faugeras, O.: ‘Statistical shape influence in geodesic active contours’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, USA, 2000, pp. 316323.
    29. 29)
      • 29. Li, C., Huang, R., Ding, Z., et al: ‘A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI’, IEEE Trans. Image Process., 2011, 20, (7), pp. 20072016.
    30. 30)
      • 30. Kichenassamy, S., Kumar, A., Olver, P., et al: ‘Gradient flows and geometric active contour models’. Proc. Fifth Int. Conf. Computer Vision, 1995, Cambridge, USA, 20 June 1995, pp. 810815.
    31. 31)
      • 31. Taheri, S., Ong, S.H., Chong, V.F.: ‘Level-set segmentation of brain tumors using a threshold-based speed function’, Image Vis. Comput.., 2010, 28, (1), pp. 2637.
    32. 32)
      • 32. Chan, T., Vese, L.: ‘An active contour model without edges’, IEEE Transactions on Image Processing, 2001, 10, (2), pp. 266277.
    33. 33)
      • 33. Chan, T.F., Sandberg, B.Y., Vese, L.A.: ‘Active contours without edges for vector-valued images’, J. Vis. Commun. Image Represent., 2000, 11, (2), pp. 130141.
    34. 34)
      • 34. Mumford, D., Shah, J.: ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math., 1989, 42, (5), pp. 577685.
    35. 35)
      • 35. Rousson, M.: ‘Cue integration and front evolution in image segmentation’. Ph.D. thesis, Nice, 2004.
    36. 36)
      • 36. Lianantonakis, M., Petillot, Y.R.: ‘Sidescan sonar segmentation using active contours and level set methods’. InOceans 2005-Europe, Brest, France, 20 June 2005, pp. 719724.
    37. 37)
      • 37. Vese, L.A., Chan, T.F.: ‘A multiphase level set framework for image segmentation using the Mumford and Shah model’, Int. J. Comput. Vis., 2002, 50, (3), pp. 271293.
    38. 38)
      • 38. Rahmat, R., Nailon, W.H., Price, A., et al: ‘New level set model in follow up radiotherapy image analysis’. Annual Conf. Medical Image Understanding and Analysis, Edinburgh, UK, 11 July 2017, pp. 273284.
    39. 39)
      • 39. Bara, S., Kerroum, M.A., Hammouch, A., et al: ‘Variational image segmentation models: application to medical images MRI’. 2011 Int. Conf. Multimedia Computing and Systems (ICMCS), Ouarzazate, Morocco, 7 April 2011, pp. 14.
    40. 40)
      • 40. Zhang, N., Zhang, J., Shi, R.: ‘An improved Chan-Vese model for medical image segmentation’. 2008 Int. Conf. Computer Science and Software Engineering, Hubei, China, 12 December 2008, pp. 864867.
    41. 41)
      • 41. Zhang, K., Zhang, L., Song, H., et al: ‘Active contours with selective local or global segmentation: a new formulation and level set method’, Image Vis. Comput.., 2010, 28, (4), pp. 668676.
    42. 42)
      • 42. Zhang, K., Song, H., Zhang, L.: ‘Active contours driven by local image fitting energy’, Pattern Recognit., 2010, 43, (4), pp. 11991206.
    43. 43)
      • 43. Li, C., Kao, C.Y., Gore, J.C., et al: ‘Minimization of region-scalable fitting energy for image segmentation’, IEEE Trans. Image Process., 2008, 17, (10), pp. 19401949.
    44. 44)
      • 44. Zhang, K., Zhang, L., Zhang, S.: ‘A variational multiphase level set approach to simultaneous segmentation and bias correction’. 2010 17th IEEE Int. Conf. Image Processing (ICIP), Hong Kong, 26 September 2010, pp. 41054108.
    45. 45)
      • 45. Liu, S., Peng, Y.: ‘A local region-based Chan-Vese model for image segmentation’, Pattern Recognit., 2012, 45, (7), pp. 27692779.
    46. 46)
      • 46. Wang, X.F., Huang, D.S., Xu, H.: ‘An efficient local Chan-Vese model for image segmentation’, Pattern Recognit., 2010, 43, (3), pp. 603618.
    47. 47)
      • 47. Droske, M., Meyer, B., Rumpf, M., et al: ‘An adaptive level set method for medical image segmentation’. Biennial Int. Conf. Information Processing in Medical Imaging, Davis, USA, 18 June 2001, pp. 416422.
    48. 48)
      • 48. Ho, S., Cody, H., Gerig, G.: ‘Snap: A software package for user-guided geodesic snake segmentation’. Submitted to MICCAI 2003. Apr 2003.
    49. 49)
      • 49. Cheng, K., Gu, L., Xu, J.: ‘A novel shape prior based level set method for liver segmentation from MR images’. Int. Conf. Information Technology and Applications in Biomedicine, Shenzhen, China, 30 May 2008, pp. 144147.
    50. 50)
      • 50. Lankton, S., Tannenbaum, A.: ‘Localizing region-based active contours’, IEEE Trans. Image Process., 2008, 17, (11), pp. 20292039.
    51. 51)
      • 51. Michailovich, O., Rathi, Y., Tannenbaum, A.: ‘Image segmentation using active contours driven by the Bhattacharyya gradient flow’, IEEE Trans. Image Process., 2007, 16, (11), pp. 27872801.
    52. 52)
      • 52. Pereyra, M., Batatia, H., McLaughlin, S.: ‘Exploiting information geometry to improve the convergence properties of variational active contours’, IEEE. J. Sel. Top. Signal. Process., 2013, 7, (4), pp. 700707.
    53. 53)
      • 53. Yuan, Y., He, C.: ‘Variational level set methods for image segmentation based on both L2 and Sobolev gradients’, Nonlinear Anal. Real World Appl., 2012, 13, (2), pp. 959966.
    54. 54)
      • 54. Lefohn, A., Cates, J., Whitaker, R.: ‘Interactive, GPU-based level sets for 3D segmentation’. Proc. Medical Image Computing and Computer-Assisted Intervention MICCAI, Montreal, Canada, November 2003.
    55. 55)
      • 55. Lin, P., Zheng, C.X., Yang, Y.: ‘Model-based medical image segmentation: a level set approach’. Fifth World Congress on Intelligent Control and Automation, 2004. WCICA 2004, 15 June 2004, vol. 6, pp. 55415544.
    56. 56)
      • 56. Shi, Y., Karl, W.C.: ‘A real-time algorithm for the approximation of level-set-based curve evolution’, IEEE Trans. Image Process., 2008, 17, (5), pp. 645656.
    57. 57)
      • 57. Cao, Z., Pi, Y., Yang, X., et al: ‘A variational level set SAR image segmentation approach based on statistical model’. 2008 7th European Conf. Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany, 2 June 2008, pp. 14.
    58. 58)
      • 58. Bernard, O., Friboulet, D., Thévenaz, P., et al: ‘Variational B-spline level-set: a linear filtering approach for fast deformable model evolution’, IEEE Trans. Image Process., 2009, 18, (6), pp. 11791191.
    59. 59)
      • 59. Diop, E.H., Ba, S.O., Jerbi, T., et al: ‘Variational and shape prior-based level set model for image segmentation’. AIP Conf. Proc., 2010, 1281, (1), pp. 21392142.
    60. 60)
      • 60. Ghosh, P., Mitchell, M., Tanyi, J.A., et al: ‘A genetic algorithm-based level set curve evolution for prostate segmentation on pelvic CT and MRI images’, Biomed. Image Anal. Mach. Learn. Technol., Appl. Tech., 2009, 12, pp. 127149.
    61. 61)
      • 61. Ganta, R.R., Zaheeruddin, S., Baddiri, N., et al: ‘Particle swarm optimization clustering based level sets for image segmentation’. 2012 Annual IEEE India Conf. (INDICON), Kochi, India, 7 December 2012, pp. 10531056.
    62. 62)
      • 62. Jiang, D., Xu, B., Ge, L.: ‘A hybrid multi-cell tracking approach with level set evolution and Ant colony optimization’. Int. Conf. Swarm Intelligence, Beijing, China, 25 June 2015, pp. 213221.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5796
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5796
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address