access icon free Data embedding in high efficiency video coding (HEVC) videos by modifying the partitioning of coding units

A data embedding solution in HEVC videos is proposed by modifying the partitioning of coding units (CUs). The partitions of a CU are first represented as a sequence of binary flags. The flags pertaining to 16 × 16 sub CUs are used as a cover for data embedding, where 6 or 4 message bits are embedded per CU. The data embedding algorithm guarantees that a maximum of one partition is modified per message segment, therefore, in a given CU, either 0, 1 or 2 partitions are modified. The proposed solution is assessed in terms of message payload, number of modified partitions, loss in video quality as indicated by the PSNR results, mean objective scores and excessive bitrate. The proposed solution can embed messages with up to an average payload of 32.6 kbit/s with a corresponding average distortion of <0.5 dB. Comparisons with existing solutions reveal that the proposed solution maintains similar message payloads with less modifications of CU partitioning and at the same time resulting in less distortions for the cover video.

Inspec keywords: video coding

Other keywords: message bits; data embedding algorithm; CU partitioning; binary flags; message payload; modified partitions; video quality; message payloads; coding units; PSNR; cover video; message segment; HEVC video

Subjects: Image and video coding; Video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 11. Cao, Y., Zhang, H., Zhao, X., et al: ‘Covert communication by compressed videos exploiting the uncertainty of motion estimation’, IEEE Commun. Lett., 2015, 19, (2), pp. 203206.
    2. 2)
      • 10. Stütz, T., Autrusseau, F., Uhl, A.: ‘Non-blind structure-preserving substitution watermarking of H.264/CAVLC inter-frames’, IEEE Trans. Multimed., 2014, 16, (5), pp. 13371349.
    3. 3)
      • 20. ‘Methodology for the Subjective Assessment of the Quality of TV Pictures’, Recommendation ITU-R BT.500–11, January 2002.
    4. 4)
      • 2. Chang, F.C., Huang, H.C., Hang, H.M.: ‘Layered access control schemes on watermarked scalable media’, J. VLSI Signal Process., 2007, 49, (2007), pp. 443455.
    5. 5)
      • 18. Crandall, R.: ‘Some notes on steganography’, 1998, http://dde.binghamton.edu/download/Crandall_matrix.pdf, accessed 20 February 2019.
    6. 6)
      • 16. Tew, Y., Wong, K.: ‘Information hiding in HEVC standard using adaptive coding block size decision’. Proc. IEEE Int. Conf. on Image Processing, Paris, France, October 2014, pp. 55025506.
    7. 7)
      • 3. Su, P.C., Wu, C.-S., Chen, I.-F., et al: ‘A practical design of digital video watermarking in H.264/AVC for content authentication’, Signal Process.: Image Commun., 2011, 26, (8–9), pp. 413426.
    8. 8)
      • 19. Kim, I.-K., McCann, K., Sugimoto, K., et al: ‘High efficiency video coding (HEVC) test model 13 (HM13) encoder description’. Document: JCTVC-O1002, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 15th Meeting, Geneva, CH, 23 October 1 November 2013.
    9. 9)
      • 12. Wang, K., Zhao, H., Wang, H.: ‘Video steganalysis against motion vector-based steganography by adding or subtracting one motion vector value’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (5), pp. 741751.
    10. 10)
      • 17. Shanableh, T.: ‘Altering split decisions of coding units for message embedding in HEVC’, Multimed. Appl., 2017, 77, (7), pp. 89398953.
    11. 11)
      • 14. Hu, Y., Zhang, C., Su, Y.: ‘Information hiding based on intra prediction modes H.264/AVC’. Proc. IEEE Int. Conf. on Multimedia and Expo, Beijing, China, 2007, pp. 12311234.
    12. 12)
      • 1. Tian, L., Zheng, N., Xue, J., et al: ‘An integrated visual saliency-based watermarking approach for synchronous image authentication and copyright protection’, Signal Process., Image Commun., 2011, 26, (8–9), pp. 427437.
    13. 13)
      • 15. Yang, G., Li, J., He, Y., et al: ‘An information hiding algorithm based on intra-prediction modes and matrix coding for H.264/AVC video stream’, Int. J. Electron. Commun., 2011, 4, (65), pp. 331337.
    14. 14)
      • 6. Yilmaz, A., Aydin, A.: ‘Error detection and concealment for video transmission using information hiding’, Signal Process., Image Commun., 2008, 23, (4), pp. 298312.
    15. 15)
      • 13. Tasdemir, K., Kurugollu, F., Sezer, S.: ‘Spatio-temporal rich model-based video steganalysis on cross sections of motion vector planes’, IEEE Trans. Image Process., 2016, 25, (7), pp. 33163328.
    16. 16)
      • 5. Kapotas, S., Skodras, A.: ‘A new data hiding scheme for scene change detection in H.264 encoded video sequences’. Proc. IEEE Int. Conf. on Multimedia and Expo, Hannover, Germany, 2008, pp. 277280.
    17. 17)
      • 9. Shanableh, T.: ‘Data hiding in MPEG video files using multivariate regression and flexible macroblock ordering’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 455464.
    18. 18)
      • 8. Shanableh, T.: ‘Matrix encoding for data hiding using multilayer video coding and transcoding solutions’, Signal Process., Image Commun.2012, 27, (9), pp. 10251034.
    19. 19)
      • 4. Emmanuel, S., Vinod, A., Rajan, D., et al: ‘An authentication watermarking scheme with transaction tracking enabled’. Proc. Digital EcoSystems and Technologies Conf., Inaugural, Cairns, Australia, February 2007.
    20. 20)
      • 7. Xu, D., Wang, R., Shi, Y.Q.: ‘Data hiding in encrypted H.264/AVC video streams by codeword substitution’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (4), pp. 596606.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5782
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5782
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading