http://iet.metastore.ingenta.com
1887

Salient object detection via reciprocal function filter

Salient object detection via reciprocal function filter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Salient object detection (SOD) has been attracting a lot of interest, and recently many computational models have been developed. Here, the authors formulate a SOD model, in which saliency map is computed as a combination of the colour, its distribution-based saliency and orientation saliency. Similar to traditional SODs, the proposed method is based on super-pixel segmentation and super-pixel utilises both colour and its distribution-based saliency to generate a coarse saliency map. However, distinct from traditional SODs, authors further use orientation contrast to optimise the coarse saliency map to obtain an improved saliency map. Authors’ contributions are twofold. First, the authors combine colour uniqueness and its distribution with local orientation information (LOI) used in Itti's model to effectively improve profiles of salient regions. Second, a reciprocal function is defined to substitute the Gabor function used in LOI, and the authors have proved that the substitution could detect relatively homogeneous and uniform regions at the boundary of salient object, whereas it is what the traditional models lack. Authors’ approach significantly outperforms state-of-the-art methods on four benchmark datasets, while the authors demonstrate that the proposed method runs as fast as most existing algorithms.

References

    1. 1)
      • 1. Donoser, M., Urschler, M., Hirzer, M., et al: ‘Saliency driven total variation segmentation’. Int. Conf. on Computer Vision, Kyoto, Japan, 2009.
    2. 2)
      • 2. Itti, L.: ‘Automatic foveation for video compression using a neurobiological model of visual attention’, IEEE Trans. Image Process., 2004, pp. 13041318.
    3. 3)
      • 3. Kanan, C., Cottrell, G.W.: ‘Robust classification of objects, faces, and flowers using natural image statistics’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, California, USA, 2010, pp. 24722479.
    4. 4)
      • 4. Chen, T., Cheng, M.-M., Tan, P., et al: ‘Sketch2photo: internet image montage’, ACM Trans. Graph., 2009, 28, (5), pp. 110.
    5. 5)
      • 5. Parkhurst, D., Law, K., Niebur, E.: ‘Modeling the role of salience in the allocation of overt visual attention’, Vis. Res., 2002, 42, (1), pp. 107123.
    6. 6)
      • 6. Itti, L., Koch, C.: ‘Computational modelling of visual attention’, Nat. Rev. Neurosci., 2001, 2, (3), pp. 194203.
    7. 7)
      • 7. Cheng, M.M., Zhang, G.X., Mitra, N.J.: ‘Global contrast based salient region detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 37, (3), pp. 569582.
    8. 8)
      • 8. Liu, T., Yuan, Z., Sun, J., et al: ‘Learning to detect a salient object’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (2), p. pp. 353367.
    9. 9)
      • 9. Yang, C., Zhang, L., Lu, H., et al: ‘Saliency detection via graph-based manifold ranking’. Proc. IEEE Conf. CVPR, Portland, Oregon, USA, 2013, pp. 31663173.
    10. 10)
      • 10. Han, J., Zhang, D., Hu, X., et al: ‘Background prior-based salient object detection via deep reconstruction residual’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (8), pp. 13091321.
    11. 11)
      • 11. Wei, Y., Wen, F., Zhu, W., et al: ‘Geodesic saliency using background priors’. European Conf. on Computer Vision, Florence, Italy, 2012.
    12. 12)
      • 12. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al: ‘Saliency filters: contrast based filtering for salient region detection’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, Rhode Island, USA, 2012.
    13. 13)
      • 13. Chang, K.-Y., Liu, T.-L., Chen, H.-T., et al: ‘Fusing generic objectness and visual saliency for salient object detection’. Int. Conf. on Computer Vision, Barcelona, Spain, 2011.
    14. 14)
      • 14. Li, Y., Hou, X., Koch, C., et al: ‘The secrets of salient object segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014.
    15. 15)
      • 15. LeCun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    16. 16)
      • 16. He, K., Zhang, X., Ren, S., et al: ‘Spatial pyramid pooling in deep convolutional networks for visual recognition’. European Conf. on Computer Vision, Zurich, Switzerland, 2014.
    17. 17)
      • 17. Girshick, R., Donahue, J., Darrell, T., et al: ‘Rich feature hierarchies for accurate object detection and semantic segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014.
    18. 18)
      • 18. Itti, L., Koch, C., Niebur, E.: ‘A model of saliency-based visual attention for rapid scene analysis’, Pattern Anal. Mach. Intell., 1998, 20, (11), pp. 12541259.
    19. 19)
      • 19. Borji, A., Sihite, D.N., Itti, L.: ‘Salient object detection: a benchmark’, IEEE Trans. Image Process., 2015, 24, (12), pp. 414429.
    20. 20)
      • 20. Borji, A., Cheng, M.M., Jiang, H., et al: ‘Salient object detection: a survey’, Eprint Arxiv, 2014, 16, (7), p. 3118.
    21. 21)
      • 21. Yan, Q., Xu, L., Shi, J., et al: ‘Hierarchical saliency detection’. Computer Vision and Pattern Recognition IEEE, Portland, Oregon, USA, 2013, pp. 11551162.
    22. 22)
      • 22. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing markov chain’. IEEE Int. Conf. on Computer Vision, IEEE Computer Society, Sydney, Australia, 2013, pp. 16651672.
    23. 23)
      • 23. Li, X., Lu, H., Zhang, L., et al: ‘Saliency detection via dense and sparse reconstruction’. IEEE Int. Conf. on Computer Vision IEEE, Sydney, Australia, 2013, pp. 29762983.
    24. 24)
      • 24. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. IEEE Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society, Columbus, Ohio, USA, 2014, pp. 28142821.
    25. 25)
      • 25. Khuwuthyakorn, P., Robles-Kelly, A., Zhou, J.: ‘Object of interest detection by saliency learning’. European Conf. on Computer Vision, Crete, Greece, 2010.
    26. 26)
      • 26. Lu, S., Mahadevan, V., Vasconcelos, N.: ‘Learning optimal seeds for diffusion-based salient object detection’. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014.
    27. 27)
      • 27. Kim, J., Han, D., Tai, Y.-W., et al: ‘Salient region detection via high-dimensional colour transform’. IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, Ohio, USA, 2014.
    28. 28)
      • 28. Mehrani, P., Veksler, O.: ‘Saliency segmentation based on learning and graph cut refinement’. British Machine Vision Conf., Wales, UK, 2010.
    29. 29)
      • 29. Carreira, J., Sminchisescu, C.: ‘Constrained parametric min-cuts for automatic object segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, California, USA, 2010, pp. 32413248.
    30. 30)
      • 30. Wang, P., Wang, J., Zeng, G., et al: ‘Salient object detection for searched web images via global saliency’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, Rhode Island, USA, 2012, pp. 31943201.
    31. 31)
      • 31. Moosmann, F., Larlus, D., Jurie, F.: ‘Learning saliency maps for object categorization’. Int. Workshop on The Representation and Use of Prior Knowledge in Vision (in ECCV'06), Graz, Austria, 2006.
    32. 32)
      • 32. Huang, F., Qi, J., Lu, H., et al: ‘Salient object detection via multiple instance learning’, IEEE Trans. Image Process., 2017, 26, (4), pp. 19111922.
    33. 33)
      • 33. Jiang, H., Cheng, M.M., Li, S.J., et al: ‘Joint salient object detection and existence prediction’, Front. Comput. Sci., 2017, pp. 111.
    34. 34)
      • 34. He, S, Lau, R.W., Liu, W., et al: ‘SuperCNN: a super-pixelwise convolutional neural network for salient object detection’, Int. J. Comput. Vis., 2015, 115, (3), pp. 330344.
    35. 35)
      • 35. Li, X., Zhao, L., Wei, L., et al: ‘Deepsaliency: multi-task deep neural network model for salient object detection’, IEEE Trans. Image Process., 2016, 25, (8), pp. 39193930.
    36. 36)
      • 36. Li, G., Yu, Y.: ‘Deep contrast learning for salient object detection’, Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, pp. 478487.
    37. 37)
      • 37. Liu, N., Han, J.: ‘DHSNet: deep hierarchical saliency network for salient object detection’. Computer Vision and Pattern Recognition. IEEE, Las Vegas, USA, 2016, pp. 678686.
    38. 38)
      • 38. Hou, Q., Cheng, M.M., Hu, X., et al: ‘Deeply supervised salient object detection with short connections’. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) IEEE, Honolulu, Hawaii, USA, 2017, pp. 53005309.
    39. 39)
      • 39. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11), p. 2274.
    40. 40)
      • 40. Collins, R.T.: ‘Mean-shift blob tracking through scale space’. IEEE Conf. on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, 2003, vol. 2, pp. 234240.
    41. 41)
      • 41. Li, G., Yu, Y.: ‘Visual saliency based on multiscale deep features’, Proc. of the IEEE conf. on computer vision and pattern recognition, Boston, USA, 2015, pp. 54555463.
    42. 42)
      • 42. Jiang, P., Ling, H., Yu, J., et al: ‘Salient region detection by ufo: uniqueness, focusness and objectness’. 2013 IEEE Int. Conf. on Computer Vision (ICCV), Sydney, Australia, 2013, pp. 19761983.
    43. 43)
      • 43. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009. CVPR 2009 IEEE, Boston, USA, 2009, pp. 15971604.
    44. 44)
      • 44. Wang, L., Lu, H., Ruan, X., et al: ‘Deep networks for saliency detection via local estimation and global search’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 31833192.
    45. 45)
      • 45. Cheng, M.M., Warrell, J., Lin, W.Y., et al: ‘Efficient salient region detection with soft image abstraction’. IEEE Int. Conf. on Computer Vision. IEEE Computer Society, Sydney, Australia, 2013, pp. 15291536.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5722
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5722
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address