http://iet.metastore.ingenta.com
1887

Fast and robust ellipse detector based on edge following method

Fast and robust ellipse detector based on edge following method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a fast and robust ellipse detector based on edge following method. The detector first extracts segments using an edge predictor based on curvature analysis. Then, line segments are generated based on length condition other than least-squares approximation. After that, potential ellipses are detected based on edge curvature and convexity. In addition, a re-find contours detection method is introduced to improve the accuracy by searching edge points in the missing part of the ellipse. The performance of the detector has been tested on different datasets containing both synthetic and real images with three other algorithms based on the edge following method. Experimental results indicate that the proposed method always has the fastest execution time. Besides, it advances the state of the art in accuracy in most cases. Generally speaking, it is a fast, robust and effective ellipse detector for real-time applications.

References

    1. 1)
      • 1. Liang, J., Zhang, M., Liu, D., et al: ‘Robust ellipse fitting based on sparse combination of data points’, IEEE Trans. Image Process., 2013, 22, (6), pp. 22072218.
    2. 2)
      • 2. Lu, C., Hu, W.: ‘Effective method for ellipse extraction and integration for spacecraft images’, Opt. Eng., 2013, 52, (5), pp. 117.
    3. 3)
      • 3. Patraucean, V., Gurdjos, P., Gioi, R.G.V.: ‘Joint a contrario ellipse and line detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39, (4), pp. 788802.
    4. 4)
      • 4. Libuda, L., Grothues, I., Kraiss, K.: ‘Ellipse detection in digital image data using geometric features’, International Conference on Computer Vision Theory and Applications, Setúbal, Portugal, February, 2006, pp. 229239.
    5. 5)
      • 5. Prasad, D.K., Leung, M.K.H.: ‘An ellipse detection method for real images’. Image and Vision Computing New Zealand (IVCNZ), Queenstown, New Zealand, Nov. 2010, pp. 18.
    6. 6)
      • 6. Arellano, C., Dahyot, R.: ‘Robust ellipse detection with Gaussian mixture models’, Pattern Recognit., 2016, 58, pp. 1226.
    7. 7)
      • 7. Yin, P.Y.: ‘A new circle/ellipse detector using genetic algorithms’, Pattern Recognit. Lett., 1999, 20, (7), pp. 731740.
    8. 8)
      • 8. Yao, J., Kharma, N., Grogono, P.: ‘Fast robust GA-based ellipse detection’. Int. Conf. on Pattern Recognition, Cambridge, UK, Aug. 2004, pp. 14.
    9. 9)
      • 9. Mai, F., Hung, Y.S., Zhong, H., et al: ‘A hierarchical approach for fast and robust ellipse extraction’, Pattern Recognit.., 2008, 41, (8), pp. 25122524.
    10. 10)
      • 10. Xu, L., Oja, E., Kultanen, P.: ‘A new curve detection method: randomized Hough transform (RHT)’, Pattern Recognit. Lett., 1990, 11, (5), pp. 331338.
    11. 11)
      • 11. McLaughlin, R.A.: ‘Randomized Hough transform: improved ellipse detection with comparison’, Pattern Recognit. Lett., 1998, 19, (3–4), pp. 299305.
    12. 12)
      • 12. Kiryati, N., Eldar, Y., Bruckstein, A.M.: ‘A probabilistic Hough transform’, Pattern Recognit.., 1991, 24, (4), pp. 303316.
    13. 13)
      • 13. Chen, S., Xia, R., Zhao, J., et al: ‘A hybrid method for ellipse detection in industrial images’, Pattern Recognit.., 2017, 68, pp. 8298.
    14. 14)
      • 14. Pătrăucean, V., Gurdjos, P., Gioi, R.G.V.: ‘A parameterless line segment and elliptical arc detector with enhanced ellipse fitting’. European Conf. on Computer Vision 2012, Berlin, Heidelberg, Nov. 2012, pp. 572585.
    15. 15)
      • 15. Kim, E., Haseyama, M., Kitajima, H.: ‘Fast and robust ellipse extraction from complicated images’. Int. Conf. on Information Technology and Applications, Bathurst, Australia, Nov. 2002, pp. 16.
    16. 16)
      • 16. Fornaciari, M., Prati, A., Cucchiara, R.: ‘A fast and effective ellipse detector for embedded vision applications’, Pattern Recognit.., 2014, 47, (11), pp. 36933708.
    17. 17)
      • 17. Chia, A.Y.S., Rahardja, S., Rajan, D., et al: ‘A split and merge based ellipse detector with self-correcting capability’, IEEE Trans. Image Process., 2011, 20, (7), pp. 19912006.
    18. 18)
      • 18. Prasad, D.K., Leung, M.K.H., Cho, S.Y.: ‘Edge curvature and convexity based ellipse detection method’, Pattern Recognit.., 2012, 45, (9), pp. 32043221.
    19. 19)
      • 19. Liu, C., Hu, W.: ‘Ellipse fitting for imaged cross sections of a surface of revolution’, Pattern Recognit.., 2015, 48, (4), pp. 14401454.
    20. 20)
      • 20. Salhi, A., Minaoui, B., Fakir, M., et al: ‘Real-time detection of road signs’, J. Electron. Commer. Org. (JECO), 2015, 13, (3), pp. 3646.
    21. 21)
      • 21. Guan, Y., Huang, Y.: ‘Multi-pose human head detection and tracking boosted by efficient human head validation using ellipse detection’, Eng. Appl. Artif. Intell., 2015, 37, pp. 181193.
    22. 22)
      • 22. Dong, H., Sun, G., Pang, W.C., et al: ‘Fast ellipse detection via gradient information for robotic manipulation of cylindrical objects’, IEEE Robot. Autom. Lett., 2018, 3, (4), pp. 27542761.
    23. 23)
      • 23. Liu, Y., Xie, Z., Wang, B., et al: ‘Pose measurement of a non-cooperative spacecraft based on circular features’. IEEE Int. Conf. on Real-time Computing and Robotics (RCAR), Angkor Wat, Cambodia, June, 2016, pp. 221226.
    24. 24)
      • 24. Zhao, S., Hu, Z., Yin, M., et al: ‘A robust real-time vision system for autonomous cargo transfer by an unmanned helicopter’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 12101219.
    25. 25)
      • 25. Automatic thresholding to cvCanny’. Avaialble at https://gist.github.com/egonSchiele/756833, accessed April 2019.
    26. 26)
      • 26. Zhang, L., Huang, X., Feng, W., et al: ‘Consistency-based ellipse detection method for complicated images’, Opt. Eng., 2016, 55, (5), pp. 115.
    27. 27)
      • 27. Yang, D., Hu, W., Lu, T., et al: ‘Effective ellipse detector with polygonal curve and likelihood ratio test’, IET Comput. Vis., 2015, 9, (6), pp. 914925.
    28. 28)
      • 28. Prasad, D.K., Leung, M.K.H., Quek, C.: ‘Ellifit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method’, Pattern Recognit.., 2013, 46, (5), pp. 14491465.
    29. 29)
      • 29. Jia, Q., Fan, X., Luo, Z., et al: ‘A fast ellipse detector using projective invariant pruning’, IEEE Trans. Image Process., 2017, 26, (8), pp. 36653679.
    30. 30)
      • 30. Dong, H., Prasad, D.K., Chen, I.M.: ‘Accurate detection of ellipses with false detection control at video rates using a gradient analysis’, Pattern Recognit.., 2018, 81, pp. 112130.
    31. 31)
      • 31. Nishikawa, A., Hosoi, T., Koara, K., et al: ‘Real-time visual tracking of the surgeon's face for laparoscopic surgery’. Int. Conf. on Medical Image Computing & Computer-assisted Intervention, Berlin, Heidelberg, Oct. 2001, pp. 916.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5687
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5687
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address