access icon free Multilevel magnetic resonance imaging compression using compressive sensing

In this study, a multilevel compressive sensing (CS) compression for magnetic resonance imaging (MRI) images is presented. The proposed algorithm divides the image into frames of equal size, transforms the pixels inside the frame into the sparse domain, and then applies the CS compression to each frame with different level of compression. Four levels of compression are suggested, based on how sparse is the information inside the frame. The proposed algorithm is evaluated using six real MRI images showing different parts of the human body. The experimental results show a significant improvement of 7.03 dB in peak-signal-to-noise ratio and 23.76% in compression level (CL) when compared with a uniform CL algorithm.

Inspec keywords: medical image processing; compressed sensing; image coding; biomedical MRI

Other keywords: peak-signal-to-noise ratio; human body; magnetic resonance imaging images; MRI images; magnetic resonance imaging compression; CS compression; multilevel compressive sensing compression; compression level; sparse domain

Subjects: Biomedical magnetic resonance imaging and spectroscopy; Image and video coding; Medical magnetic resonance imaging and spectroscopy; Patient diagnostic methods and instrumentation; Computer vision and image processing techniques; Biology and medical computing

References

    1. 1)
      • 23. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM Rev., 2001, 43, (1), pp. 129159.
    2. 2)
      • 6. Unni, V., Mishra, D., Subrahmanyam, G.: ‘Adaptive multifocus image fusion using block compressed sensing with smoothed projected landweber integration in the wavelet domain’, J. Opt. Soc. Am. A, 2016, 33, (12), pp. 25162525.
    3. 3)
      • 3. Kim, D.-O., Park, R.-H.: ‘Evaluation of image quality using dual-tree complex wavelet transform and compressive sensing’, Electron. Lett., 2010, 46, (7), pp. 494495.
    4. 4)
      • 1. Candès, E.J.: ‘Compressive sampling’. Proc. Int. Congress of Mathematicians, Madrid, Spain, 2006, vol. 3, pp. 14331452.
    5. 5)
      • 22. Mallat, S.G., Zhang, Z.: ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process., 1993, 41, (12), pp. 33973415.
    6. 6)
      • 16. Roohi, S.F., Zonoobi, D., Kassim, A.A., et al: ‘Dynamic MRI reconstruction using low rank plus sparse tensor decomposition’. 2016 IEEE Int. Conf. Image Processing (ICIP), Phoenix, USA, 2016, pp. 17691773.
    7. 7)
      • 18. Razzaq, F.A., Mohamed, S., Bhatti, A., et al: ‘Non-uniform sparsity in rapid compressive sensing MRI’. 2012 IEEE Int. Conf. Systems, Man, and Cybernetics (SMC), Seoul, Korea, 2012, pp. 22532258.
    8. 8)
      • 20. Chartrand, R.: ‘Fast algorithms for non-convex compressive sensing: MRI reconstruction from very few data’. IEEE Int. Symp. Biomedical Imaging: From Nano to Macro, Boston, USA, 2009, pp. 262265.
    9. 9)
      • 12. Ragab, M., Omer, O.A., Hussien, H.S.: ‘Compressive sensing MRI using dual tree complex wavelet transform with wavelet tree sparsity’. 2017 34th National Radio Science Conf. (NRSC), Port Said, Egypt, 2017, pp. 481486.
    10. 10)
      • 5. Xu, J., Qiao, Y., Wen, Q., et al: ‘Perceptual rate-distortion optimized image compression based on block compressive sensing’, J. Electron. Imaging, 2016, 25, (5), p. 053004.
    11. 11)
      • 4. Rontani, D., Choi, D., Chang, C.-Y., et al: ‘Compressive sensing with optical chaos’, Sci. Rep., 2016, 6, pp. 17.
    12. 12)
      • 21. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    13. 13)
      • 9. Qureshi, M.A., Deriche, M.: ‘A new wavelet based efficient image compression algorithm using compressive sensing’, Multimedia Tools Appl., 2016, 75, (12), pp. 67376754.
    14. 14)
      • 19. Safavi, S.H., Torkamani-Azar, F.: ‘Sparsity-aware adaptive block-based compressive sensing’, IET Signal Process., 2016, 11, (1), pp. 3642.
    15. 15)
      • 10. Liang, R., Kang, L., Huang, J., et al: ‘Reconstruction for infrared image based on block-sparse compressive sensing’. 2016 IEEE 13th Int. Conf. Signal Processing (ICSP), Chengdu, China, 2016, pp. 719722.
    16. 16)
      • 17. Razzaq, F.A., Mohamed, S., Bhatti, A., et al: ‘Locally sparsified compressive sensing for improved MR image quality’. 2013 IEEE Int. Conf. Systems, Man, and Cybernetics (SMC), Manchester, UK, 2013, pp. 21632167.
    17. 17)
      • 14. Lustig, M., Donoho, D.L., Santos, J.M., et al: ‘Compressed sensing MRI’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 7282.
    18. 18)
      • 11. Manimala, M., Naidu, C., Giriprasad, M.: ‘Sparse recovery algorithms based on dictionary learning for MR image reconstruction’. Int. Conf. Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 2016, pp. 13541360.
    19. 19)
      • 13. Chang, C.-H., Yu, X., Ji, J.X.: ‘Compressed sensing MRI reconstruction from 3D multichannel data using GPUs’, Magn. Reson. Med., 2017, 22652274.
    20. 20)
      • 15. Babacan, S.D., Peng, X., Wang, X.-P., et al: ‘Reference-guided sparsifying transform design for compressive sensing MRI’. 2011 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society EMBC, Boston, USA, 2011, pp. 57185721.
    21. 21)
      • 8. Zhou, N., Pan, S., Cheng, S., et al: ‘Image compression–encryption scheme based on hyper-chaotic system and 2D compressive sensing’, Opt. Laser Technol., 2016, 82, pp. 121133.
    22. 22)
      • 7. Eslahi, N., Aghagolzadeh, A., Andargoli, S.M.H.: ‘Image/video compressive sensing recovery using joint adaptive sparsity measure’, Neurocomputing, 2016, 200, pp. 88109.
    23. 23)
      • 2. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5611
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5611
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading