access icon free Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform

Image fusion is the process of merging multiple images to generate a single image called ‘fused image’ which is more informative than input images in terms of human perception and machine processing. In medical applications, images of the same or different modalities are fused to generate a new image which helps clinicians in reliable and accurate diagnosis. Fused image of mono-modal medical images is used to see pre- and post-operative results. Multi-modal medical images are fused for treatment or surgical planning. In this study, the authors have focused on the fusion of lumbar spine images of two completely different modalities: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). CT provides bony details whereas MR provides soft tissue details. Since the two images are captured using two different machines, these images need to be strictly aligned with each other before fusing. Kekre's Hybrid wavelet transform (KHWT) is used to fuse registered images using combinations of six different orthogonal transforms with four different transform sizes. It is compared with five other fusion methods in qualitative and quantitative ways. The overall comparison indicates that the fused image generated using KHWT is better than input images in terms of content, quality and contrast.

Inspec keywords: wavelet transforms; bone; image fusion; biomedical MRI; computerised tomography; medical image processing; image registration; orthopaedics

Other keywords: monomodal medical images; magnetic resonance imaging; Kekre hybrid wavelet transform; image registration; multimodal lumbar spine image fusion; multimodal medical images; computed tomography; image fusion; machine processing

Subjects: Optical, image and video signal processing; X-rays and particle beams (medical uses); Integral transforms; Function theory, analysis; Integral transforms; Biology and medical computing; X-ray techniques: radiography and computed tomography (biomedical imaging/measurement); Computer vision and image processing techniques; Sensor fusion; Patient diagnostic methods and instrumentation; Medical magnetic resonance imaging and spectroscopy; Biomedical magnetic resonance imaging and spectroscopy

References

    1. 1)
      • 25. Kekre, H.B., Athawale, A., Sadavarti, D.: ‘Algorithm to generate Kekre's wavelet transform from Kekre's transform’, Int. J. Eng. Sci. Technol., 2010, 2, (5), pp. 756767.
    2. 2)
      • 51. Zhang, Y., Hong, G.: ‘An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images’, Inf. Fus., 2005, 6, (3), pp. 225234.
    3. 3)
      • 21. Unserand, M., Blu, T.: ‘Wavelet theory demystified’, IEEE Trans. Signal Process., 2003, 51, (2), pp. 470483.
    4. 4)
      • 13. Burt, P.: ‘A gradient pyramid basis for pattern selective image fusion’. Society for Information Displays (SID) Int. Symp. Digest of Technical Papers, Boston, USA, 1992, vol. 23, pp. 467470.
    5. 5)
      • 6. Gillespie, A.R., Kahle, A.B., Walker, R.E.: ‘Colour enhancement of highly correlated images-II: channel ratio and chromaticity transformation techniques’, Remote Sens. Environ., 1987, 22, pp. 343365.
    6. 6)
      • 17. Naidu, V.P.S.: ‘Discrete cosine transform based image fusion techniques’, J. Commun. Navig. Signal Process., 2012, 1, (1), pp. 3545.
    7. 7)
      • 55. ‘Spineweb online database’. Available at http://spineweb.digitalimaginggroup.ca/.
    8. 8)
      • 29. Nencini, F., Garzelli, A., Baronti, S., et al: ‘Remote sensing image fusion using the curvelet transform’, Inf. Fus., 2007, 8, (2), pp. 143156. Special Issue on Image Fusion: Advances in the State of the Art.
    9. 9)
      • 1. Klein, L.A.: ‘Sensor and data fusion concepts and applications’, Tutorial Texts, vol. 14 (SPIE Optical Engineering Press, Washington, USA, 1993), pp. 132139.
    10. 10)
      • 50. Wang, J., Peng, J., Feng, X., et al: ‘Image fusion with nonsubsampled contourlet transform and sparse representation’, J. Electron. Imaging, 2013, 22, (4), pp. 043019043019.
    11. 11)
      • 38. Yang, S., Wang, M., Jiao, L.: ‘Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis’, Inf. Fus., 2012, 13, (3), pp. 177184.
    12. 12)
      • 56. Available at https://homepages.inf.ed.ac.uk/rbf/HIPR2/affine.html.
    13. 13)
      • 46. Sarala, N., Lavanya, M.: ‘A novel approach to multi modal hybrid image fusion using wavelet and contourlet transform for medical diagnosis applications’, Imperial J. Interdisciplinary Res. (IJIR), 2017, 3, (5), ISSN: 2454-1362, pp. 331338.
    14. 14)
      • 5. Harris, J.R., Murray, R., Hirose, T.: ‘IHS transform for the integration of radar imagery with other remotely sensed data’, Photogramm. Eng. Remote Sens., 1990, 56, (12), pp. 16311641.
    15. 15)
      • 16. Ramac, L.C., Uner, M.K., Varshney, P.K.: ‘Morphological filters and wavelet based image fusion for concealed weapon detection’. Proc. of SPIE, Orlando, Florida, 1998, vol. 3376.
    16. 16)
      • 47. Sivakumar, N., Helenprabha, K.: ‘Hybrid medical image fusion using wavelet and curvelet transform with multi-resolution processing’, Biomed. Res., 2017, 28, (6), pp. 27582762.
    17. 17)
      • 45. Agarwal, J., Bedi, S.S.: ‘Implementation of hybrid image fusion technique for feature enhancement in medical diagnosis’, Human-centric Comput. Inf. Sci., 2015, 5, p. 3.
    18. 18)
      • 12. Olkkonen, H., Pesola, P.: ‘Gaussian pyramid wavelet transform for multiresolution analysis of images’, Graph. Models Image Process., 1996, 58, pp. 394398.
    19. 19)
      • 9. Kumari, S., Malviya, M., Lade, S.: ‘Image fusion techniques based on pyramid decomposition’, Int. J. Artif. Intell. Mechatron., 2014, 2, (4), pp. 127130, ISSN 2320-5121.
    20. 20)
      • 23. Udomhunsakul, S., Yamsang, P., Tumthong, S., et al: ‘Multiresolution edge fusion using SWT and SFM’. Proc. of the World Congress on Engineering 2011 Vol II WCE 2011, London, U.K., 6–8 July 2011.
    21. 21)
      • 26. Kekre, H.B., Sarode, T., Dhannawat, R.: ‘Implementation and comparison of different transform techniques using Kekre's wavelet transform for image fusion’, Int. J. Comput. Appl., 2012, 44, (10), pp. 4148.
    22. 22)
      • 32. Wang, L., Li, B., Tian, L.: ‘Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet co- efficients’, Inf. Fus., 2014, 19, (1), pp. 2028.
    23. 23)
      • 54. Kekre, H.B., Dhannawat, R., Sarode, T.: ‘Image fusion using Kekre's hybrid wavelet transform’. Int. Conf. on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 19–20 October 2012.
    24. 24)
      • 22. Krishnamoorthy, S., Soman, K.P.: ‘Implementation and comparative study of image fusion algorithms’, Int. J. Comput. Appl. (0975–8887), 2010, 9, (2), pp. 2535.
    25. 25)
      • 20. Burrus, C.S., Gopinath, R.A., Guo, H., et al: ‘Introduction to wavelets and wavelet transforms: a priimer’ (Prentice Hall, Upper Saddle River, NJ, USA, 1998).
    26. 26)
      • 48. Liu, Y., Liu, S., Wang, Z.: ‘A general framework for image fusion based on multi-scale transform and sparse representation’, Inf. Fus., 2015, 24, (1), pp. 147164.
    27. 27)
      • 49. Jiang, Y., Wang, M.: ‘Image fusion with morphological component analysis’, Inf. Fus., 2014, 18, (1), pp. 107118.
    28. 28)
      • 44. Li, S., Yang, B.: ‘Hybrid multiresolution method for multisensor multimodal im- age fusion’, IEEE Sens. J., 2010, 10, (9), pp. 15191526.
    29. 29)
      • 18. Singh, R., Khare, A.: ‘Multiscale medical image fusion in wavelet domain’, Scientific World J., 2013, Article ID 521034, p. 10. Available at http://dx.doi.org/10.1155/2013/521034.
    30. 30)
      • 39. Zheng, S., Shi, W.Z., Liu, J., et al: ‘Multisource image fusion method using support value transform’, IEEE Trans. Image Process., 2007, 16, (7), pp. 18311839.
    31. 31)
      • 33. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans. Graph., 2008, 27, (3), pp. 67:167:10.
    32. 32)
      • 10. Singh, S., Grewal, N.S., Singh, H.: ‘Multi-resolution representation of multi-focus image fusion using Gaussian and Laplacian pyramids’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2013, 3, (11), pp. 16391642, ISSN: 2277 128X.
    33. 33)
      • 34. Hu, J., Li, S.: ‘The multiscale directional bilateral filter and its application to multisensor image fusion’, Inf. Fus., 2012, 13, (3), pp. 196206.
    34. 34)
      • 35. Zhou, Z., Wang, B., Li, S., et al: ‘Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters’, Inf. Fus., 2016, 30, (1), pp. 1526.
    35. 35)
      • 36. Wang, Q., Li, S., Qin, H., et al: ‘Robust multi-modal medical image fusion via anisotropic heat diffusion guided low-rank structural analysis’, Inf. Fus., 2015, 26, (1), pp. 103121.
    36. 36)
      • 31. Li, T., Wang, Y.: ‘Biological image fusion using a NSCT based variable-weight method’, Inf. Fus., 2011, 12, (2), pp. 8592.
    37. 37)
      • 24. Borwonwatanadelok, P., Rattanapitak, W., Udomhunsakul, S.: ‘Multi-focus image fusion based on stationary wavelet transform’. 2009 Int. Conf. on Electronic Computer Technology., Piscataway, NJ, USA, 2009, 978-0-7695-3559-3/09.
    38. 38)
      • 11. Burt, P., Adelson, E.: ‘Laplacian pyramid as a compact image code’, IEEE Trans. Commun., 2013, 31, (4), pp. 532540.
    39. 39)
      • 40. Yang, B., Li, S.: ‘Multifocus image fusion and restoration with sparse representation’, IEEE Trans. Instrum. Meas., 2010, 59, (4), pp. 884892.
    40. 40)
      • 2. Jasiunas, M.D., Kearney, D.A., Hopf, J.: ‘Image fusion for uninhabited airborne vehicles’. Proc. of IEEE Int. Conf. on Field Programmable Technology, Hong Kong, 2002, pp. 348351.
    41. 41)
      • 37. Redondo, R., Roubek, F., Fischer, S., et al: ‘Multifocus image fusion using the log-gabor transform and a multisize windows technique’, Inf. Fus., 2009, 10, (2), pp. 163171.
    42. 42)
      • 27. Zhang, Z., Blum, R.S.: ‘A categorization of multiscale-decomposition based image fusion schemes with a performance study for a digital camera application’, Proc. IEEE, 1999, 87, (8), pp. 13151326.
    43. 43)
      • 53. Kekre, H.B., Dhannawat, R., Sarode, T.: ‘Kekre's hybrid wavelet transform technique with DCT, Walsh, Hartley and Kekre's transform for image fusion’, Int. J. Comput. Eng. Technol., 2013, 4, (1), pp. 195202.
    44. 44)
      • 41. Yin, H., Li, Y., Chai, Y., et al: ‘A novel sparse-representation-based multi-focus image fusion approach’, Neurocomputing, 2016, 216, pp. 216229.
    45. 45)
      • 28. Lewis, J.J., Callaghan, R.J.O., Nikolov, S.G., et al: ‘Pixel- and region-based image fusion with complex wavelets’, Inf. Fus., 2007, 8, (2), pp. 119130.
    46. 46)
      • 3. Dong, J., Zhuang, D., Huang, Y., et al: ‘Survey of multispectral image fusion techniques in remote sensing applications’ (Intech., London, 2011), pp. 122.
    47. 47)
      • 30. Do, M.N., Vetterli, M.: ‘Contourlets: a directional multi-resolution image representation’. Proc. of IEEE Int. Conf. on Image Processing, Rochester, NY, USA, 2002, vol. 1, pp. I-357I-360.
    48. 48)
      • 19. Pajares, G., dela Cruz, J.M.: ‘A wavelet – based image fusion tutorial’, Pattern Recogn. J., 2004, 37, (9), pp. 18551872.
    49. 49)
      • 15. Anderson, H.: ‘A filter-subtract-decimate hierarchical pyramid signal analyzing and synthesizing technique’. U.S. Patent 718 104, 1987.
    50. 50)
      • 14. Toet, A.: ‘Image fusion by a ratio of low-pass pyramid’, Pattern Recognit. Lett., 1996, 9, pp. 245253.
    51. 51)
      • 7. Naidu, V.P.S., Raol, J.R.: ‘Pixel-level image fusion using wavelets and principal component analysis’, Def. Sci. J., 2008, 58, (3), pp. 338352.
    52. 52)
      • 43. Sahu, A., Bhateja, V., Krishn, A., et al: ‘Medical image fusion with laplacian pyramids’. 2014 Int. Conf. on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), Greater Noida, India, 2014.
    53. 53)
      • 4. Song, L., Lin, Y., Feng, W., et al: ‘A novel automatic weighted image fusion algorithm’. Int. Workshop on Intelligent Systems and Applications, ISA, Wuhan, China, 2009, pp. 14.
    54. 54)
      • 52. Kekre, H.B., Sarode, T., Thepde, S.: ‘Inception of hybrid wavelet transform using two orthogonal transforms and it's use for image compression’, (IJCSIS) Int. J. Comput. Sci. Inf. Secur., 2011, 9, (6), pp. 8087.
    55. 55)
      • 42. Zhang, Q., Liu, Y., Blum, R.S., et al: ‘Sparse representation based multi-sensor image fusion: a review’, CoRRarXiv:1702. 03515, 2017.
    56. 56)
      • 8. Li, S.: ‘Image fusion with guided filtering’, IEEE Trans. Image Process., 2013, 22, (7), pp. 28642875.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5609
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5609
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading