http://iet.metastore.ingenta.com
1887

Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform

Fusion of multi-modal lumbar spine images using Kekre's hybrid wavelet transform

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Image fusion is the process of merging multiple images to generate a single image called ‘fused image’ which is more informative than input images in terms of human perception and machine processing. In medical applications, images of the same or different modalities are fused to generate a new image which helps clinicians in reliable and accurate diagnosis. Fused image of mono-modal medical images is used to see pre- and post-operative results. Multi-modal medical images are fused for treatment or surgical planning. In this study, the authors have focused on the fusion of lumbar spine images of two completely different modalities: Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). CT provides bony details whereas MR provides soft tissue details. Since the two images are captured using two different machines, these images need to be strictly aligned with each other before fusing. Kekre's Hybrid wavelet transform (KHWT) is used to fuse registered images using combinations of six different orthogonal transforms with four different transform sizes. It is compared with five other fusion methods in qualitative and quantitative ways. The overall comparison indicates that the fused image generated using KHWT is better than input images in terms of content, quality and contrast.

References

    1. 1)
      • 1. Klein, L.A.: ‘Sensor and data fusion concepts and applications’, Tutorial Texts, vol. 14 (SPIE Optical Engineering Press, Washington, USA, 1993), pp. 132139.
    2. 2)
      • 2. Jasiunas, M.D., Kearney, D.A., Hopf, J.: ‘Image fusion for uninhabited airborne vehicles’. Proc. of IEEE Int. Conf. on Field Programmable Technology, Hong Kong, 2002, pp. 348351.
    3. 3)
      • 3. Dong, J., Zhuang, D., Huang, Y., et al: ‘Survey of multispectral image fusion techniques in remote sensing applications’ (Intech., London, 2011), pp. 122.
    4. 4)
      • 4. Song, L., Lin, Y., Feng, W., et al: ‘A novel automatic weighted image fusion algorithm’. Int. Workshop on Intelligent Systems and Applications, ISA, Wuhan, China, 2009, pp. 14.
    5. 5)
      • 5. Harris, J.R., Murray, R., Hirose, T.: ‘IHS transform for the integration of radar imagery with other remotely sensed data’, Photogramm. Eng. Remote Sens., 1990, 56, (12), pp. 16311641.
    6. 6)
      • 6. Gillespie, A.R., Kahle, A.B., Walker, R.E.: ‘Colour enhancement of highly correlated images-II: channel ratio and chromaticity transformation techniques’, Remote Sens. Environ., 1987, 22, pp. 343365.
    7. 7)
      • 7. Naidu, V.P.S., Raol, J.R.: ‘Pixel-level image fusion using wavelets and principal component analysis’, Def. Sci. J., 2008, 58, (3), pp. 338352.
    8. 8)
      • 8. Li, S.: ‘Image fusion with guided filtering’, IEEE Trans. Image Process., 2013, 22, (7), pp. 28642875.
    9. 9)
      • 9. Kumari, S., Malviya, M., Lade, S.: ‘Image fusion techniques based on pyramid decomposition’, Int. J. Artif. Intell. Mechatron., 2014, 2, (4), pp. 127130, ISSN 2320-5121.
    10. 10)
      • 10. Singh, S., Grewal, N.S., Singh, H.: ‘Multi-resolution representation of multi-focus image fusion using Gaussian and Laplacian pyramids’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2013, 3, (11), pp. 16391642, ISSN: 2277 128X.
    11. 11)
      • 11. Burt, P., Adelson, E.: ‘Laplacian pyramid as a compact image code’, IEEE Trans. Commun., 2013, 31, (4), pp. 532540.
    12. 12)
      • 12. Olkkonen, H., Pesola, P.: ‘Gaussian pyramid wavelet transform for multiresolution analysis of images’, Graph. Models Image Process., 1996, 58, pp. 394398.
    13. 13)
      • 13. Burt, P.: ‘A gradient pyramid basis for pattern selective image fusion’. Society for Information Displays (SID) Int. Symp. Digest of Technical Papers, Boston, USA, 1992, vol. 23, pp. 467470.
    14. 14)
      • 14. Toet, A.: ‘Image fusion by a ratio of low-pass pyramid’, Pattern Recognit. Lett., 1996, 9, pp. 245253.
    15. 15)
      • 15. Anderson, H.: ‘A filter-subtract-decimate hierarchical pyramid signal analyzing and synthesizing technique’. U.S. Patent 718 104, 1987.
    16. 16)
      • 16. Ramac, L.C., Uner, M.K., Varshney, P.K.: ‘Morphological filters and wavelet based image fusion for concealed weapon detection’. Proc. of SPIE, Orlando, Florida, 1998, vol. 3376.
    17. 17)
      • 17. Naidu, V.P.S.: ‘Discrete cosine transform based image fusion techniques’, J. Commun. Navig. Signal Process., 2012, 1, (1), pp. 3545.
    18. 18)
      • 18. Singh, R., Khare, A.: ‘Multiscale medical image fusion in wavelet domain’, Scientific World J., 2013, Article ID 521034, p. 10. Available at http://dx.doi.org/10.1155/2013/521034.
    19. 19)
      • 19. Pajares, G., dela Cruz, J.M.: ‘A wavelet – based image fusion tutorial’, Pattern Recogn. J., 2004, 37, (9), pp. 18551872.
    20. 20)
      • 20. Burrus, C.S., Gopinath, R.A., Guo, H., et al: ‘Introduction to wavelets and wavelet transforms: a priimer’ (Prentice Hall, Upper Saddle River, NJ, USA, 1998).
    21. 21)
      • 21. Unserand, M., Blu, T.: ‘Wavelet theory demystified’, IEEE Trans. Signal Process., 2003, 51, (2), pp. 470483.
    22. 22)
      • 22. Krishnamoorthy, S., Soman, K.P.: ‘Implementation and comparative study of image fusion algorithms’, Int. J. Comput. Appl. (0975–8887), 2010, 9, (2), pp. 2535.
    23. 23)
      • 23. Udomhunsakul, S., Yamsang, P., Tumthong, S., et al: ‘Multiresolution edge fusion using SWT and SFM’. Proc. of the World Congress on Engineering 2011 Vol II WCE 2011, London, U.K., 6–8 July 2011.
    24. 24)
      • 24. Borwonwatanadelok, P., Rattanapitak, W., Udomhunsakul, S.: ‘Multi-focus image fusion based on stationary wavelet transform’. 2009 Int. Conf. on Electronic Computer Technology., Piscataway, NJ, USA, 2009, 978-0-7695-3559-3/09.
    25. 25)
      • 25. Kekre, H.B., Athawale, A., Sadavarti, D.: ‘Algorithm to generate Kekre's wavelet transform from Kekre's transform’, Int. J. Eng. Sci. Technol., 2010, 2, (5), pp. 756767.
    26. 26)
      • 26. Kekre, H.B., Sarode, T., Dhannawat, R.: ‘Implementation and comparison of different transform techniques using Kekre's wavelet transform for image fusion’, Int. J. Comput. Appl., 2012, 44, (10), pp. 4148.
    27. 27)
      • 27. Zhang, Z., Blum, R.S.: ‘A categorization of multiscale-decomposition based image fusion schemes with a performance study for a digital camera application’, Proc. IEEE, 1999, 87, (8), pp. 13151326.
    28. 28)
      • 28. Lewis, J.J., Callaghan, R.J.O., Nikolov, S.G., et al: ‘Pixel- and region-based image fusion with complex wavelets’, Inf. Fus., 2007, 8, (2), pp. 119130.
    29. 29)
      • 29. Nencini, F., Garzelli, A., Baronti, S., et al: ‘Remote sensing image fusion using the curvelet transform’, Inf. Fus., 2007, 8, (2), pp. 143156. Special Issue on Image Fusion: Advances in the State of the Art.
    30. 30)
      • 30. Do, M.N., Vetterli, M.: ‘Contourlets: a directional multi-resolution image representation’. Proc. of IEEE Int. Conf. on Image Processing, Rochester, NY, USA, 2002, vol. 1, pp. I-357I-360.
    31. 31)
      • 31. Li, T., Wang, Y.: ‘Biological image fusion using a NSCT based variable-weight method’, Inf. Fus., 2011, 12, (2), pp. 8592.
    32. 32)
      • 32. Wang, L., Li, B., Tian, L.: ‘Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet co- efficients’, Inf. Fus., 2014, 19, (1), pp. 2028.
    33. 33)
      • 33. Farbman, Z., Fattal, R., Lischinski, D., et al: ‘Edge-preserving decompositions for multi-scale tone and detail manipulation’, ACM Trans. Graph., 2008, 27, (3), pp. 67:167:10.
    34. 34)
      • 34. Hu, J., Li, S.: ‘The multiscale directional bilateral filter and its application to multisensor image fusion’, Inf. Fus., 2012, 13, (3), pp. 196206.
    35. 35)
      • 35. Zhou, Z., Wang, B., Li, S., et al: ‘Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters’, Inf. Fus., 2016, 30, (1), pp. 1526.
    36. 36)
      • 36. Wang, Q., Li, S., Qin, H., et al: ‘Robust multi-modal medical image fusion via anisotropic heat diffusion guided low-rank structural analysis’, Inf. Fus., 2015, 26, (1), pp. 103121.
    37. 37)
      • 37. Redondo, R., Roubek, F., Fischer, S., et al: ‘Multifocus image fusion using the log-gabor transform and a multisize windows technique’, Inf. Fus., 2009, 10, (2), pp. 163171.
    38. 38)
      • 38. Yang, S., Wang, M., Jiao, L.: ‘Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis’, Inf. Fus., 2012, 13, (3), pp. 177184.
    39. 39)
      • 39. Zheng, S., Shi, W.Z., Liu, J., et al: ‘Multisource image fusion method using support value transform’, IEEE Trans. Image Process., 2007, 16, (7), pp. 18311839.
    40. 40)
      • 40. Yang, B., Li, S.: ‘Multifocus image fusion and restoration with sparse representation’, IEEE Trans. Instrum. Meas., 2010, 59, (4), pp. 884892.
    41. 41)
      • 41. Yin, H., Li, Y., Chai, Y., et al: ‘A novel sparse-representation-based multi-focus image fusion approach’, Neurocomputing, 2016, 216, pp. 216229.
    42. 42)
      • 42. Zhang, Q., Liu, Y., Blum, R.S., et al: ‘Sparse representation based multi-sensor image fusion: a review’, CoRRarXiv:1702. 03515, 2017.
    43. 43)
      • 43. Sahu, A., Bhateja, V., Krishn, A., et al: ‘Medical image fusion with laplacian pyramids’. 2014 Int. Conf. on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), Greater Noida, India, 2014.
    44. 44)
      • 44. Li, S., Yang, B.: ‘Hybrid multiresolution method for multisensor multimodal im- age fusion’, IEEE Sens. J., 2010, 10, (9), pp. 15191526.
    45. 45)
      • 45. Agarwal, J., Bedi, S.S.: ‘Implementation of hybrid image fusion technique for feature enhancement in medical diagnosis’, Human-centric Comput. Inf. Sci., 2015, 5, p. 3.
    46. 46)
      • 46. Sarala, N., Lavanya, M.: ‘A novel approach to multi modal hybrid image fusion using wavelet and contourlet transform for medical diagnosis applications’, Imperial J. Interdisciplinary Res. (IJIR), 2017, 3, (5), ISSN: 2454-1362, pp. 331338.
    47. 47)
      • 47. Sivakumar, N., Helenprabha, K.: ‘Hybrid medical image fusion using wavelet and curvelet transform with multi-resolution processing’, Biomed. Res., 2017, 28, (6), pp. 27582762.
    48. 48)
      • 48. Liu, Y., Liu, S., Wang, Z.: ‘A general framework for image fusion based on multi-scale transform and sparse representation’, Inf. Fus., 2015, 24, (1), pp. 147164.
    49. 49)
      • 49. Jiang, Y., Wang, M.: ‘Image fusion with morphological component analysis’, Inf. Fus., 2014, 18, (1), pp. 107118.
    50. 50)
      • 50. Wang, J., Peng, J., Feng, X., et al: ‘Image fusion with nonsubsampled contourlet transform and sparse representation’, J. Electron. Imaging, 2013, 22, (4), pp. 043019043019.
    51. 51)
      • 51. Zhang, Y., Hong, G.: ‘An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images’, Inf. Fus., 2005, 6, (3), pp. 225234.
    52. 52)
      • 52. Kekre, H.B., Sarode, T., Thepde, S.: ‘Inception of hybrid wavelet transform using two orthogonal transforms and it's use for image compression’, (IJCSIS) Int. J. Comput. Sci. Inf. Secur., 2011, 9, (6), pp. 8087.
    53. 53)
      • 53. Kekre, H.B., Dhannawat, R., Sarode, T.: ‘Kekre's hybrid wavelet transform technique with DCT, Walsh, Hartley and Kekre's transform for image fusion’, Int. J. Comput. Eng. Technol., 2013, 4, (1), pp. 195202.
    54. 54)
      • 54. Kekre, H.B., Dhannawat, R., Sarode, T.: ‘Image fusion using Kekre's hybrid wavelet transform’. Int. Conf. on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 19–20 October 2012.
    55. 55)
      • 55. ‘Spineweb online database’. Available at http://spineweb.digitalimaginggroup.ca/.
    56. 56)
      • 56. Available at https://homepages.inf.ed.ac.uk/rbf/HIPR2/affine.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5609
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5609
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address