Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Stereoscopic image quality assessment by analysing visual hierarchical structures and binocular effects

Stereoscopic image quality assessment by analysing visual hierarchical structures and binocular effects

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the design of three-dimensional image processing systems, stereoscopic image quality assessment (SIQA) plays an indispensable role as a performance evaluator and a supervisor, yet the study upon which remains immature due to the complexity of the human visual system (HVS). In this study, a novel SIQA method is proposed by extracting quality-aware image features according to the properties of the hierarchical structure in the HVS. Especially, the interests of the primary and secondary visual cortex are taken into consideration, so that the image quality representation is constructed in a way both accurate and efficient. Moreover, influences caused by binocular effects including binocular rivalry and binocular visual discomfort are accounted to further improve the performance of the proposed method. The superiority of the proposed method is validated through experiments on public databases in comparison to state-of-the-art works in terms of accuracy and robustness.

References

    1. 1)
      • 20. Haynes, J.D., Rees, G.: ‘Decoding mental states from brain activity in humans’, Nat. Rev. Neurosci., 2006, 7, (7), pp. 523534.
    2. 2)
      • 31. You, J., Xing, L., Perkis, A., et al: ‘Perceptual quality assessment for stereoscopic images based on 2D image quality metrics and disparity analysis’. Proc. Int. Workshop on Video Processing and Quality Metrics and Consumer Electronics, 2010, pp. 6166.
    3. 3)
      • 25. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full reference image quality assessment algorithms’, IEEE Trans. Image Process., 2006, 15, (11), pp. 34403451.
    4. 4)
      • 4. Zhou, W., Yu, L., Zhou, Y., et al: ‘Blind quality estimator for 3D images based on binocular combination and extreme learning machine’, Pattern Recognit., 2017, 71, pp. 207217.
    5. 5)
      • 7. Zhou, W., Yu, L.: ‘Binocular responses for no-reference 3D image quality assessment’, IEEE Trans. Multimed., 2016, 18, (6), pp. 10771084.
    6. 6)
      • 9. Shao, F., Lin, W., Gu, S.: ‘Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics’, IEEE Trans. Image Process., 2013, 22, (5), pp. 19401953.
    7. 7)
      • 28. Park, J., Lee, S., Bovik, A.C.: ‘3D visual discomfort prediction: vergence, foveation, and the physiological optics of accommodation’, IEEE J. Sel. Top. Signal Process., 2014, 8, (3), pp. 415427.
    8. 8)
      • 3. Geng, X., Shen, L., Li, K., et al: ‘A stereoscopic image quality assessment model based on independent component analysis and binocular fusion property’, Signal Process. Image Commun., 2017, 52, pp. 5463.
    9. 9)
      • 30. Benoit, A.B., Le Callet, P., Campisi, P., et al: ‘Quality assessment of stereoscopic images’, EURASIP J. Image Video Process., 2008, 2008, (1), pp. 113.
    10. 10)
      • 11. Lin, Y., Yang, J., Lu, W., et al: ‘Quality index for stereoscopic images by jointly evaluating cyclopean amplitude and cyclopean phase’, IEEE J. Sel. Top. Signal Process., 2017, 11, (1), pp. 89101.
    11. 11)
      • 14. Hobbs, R.P., Bernstein, P.S.: ‘Nutrient supplementation for age-related macular degeneration, cataract, and dry eye’, J. Ophthalmic Vis. Res., 2014, 9, (4), pp. 487493.
    12. 12)
      • 18. Ding, Y., Zhao, Y., Zhao, X.: ‘Image quality assessment based on multi-feature extraction and synthesis with support vector regression’, Signal Process. Image Commun., 2017, 54, pp. 8192.
    13. 13)
      • 2. Moorthy, A.K., Su, C.C., Mittal, A., et al: ‘Subjective evaluation of stereoscopic image quality’, Signal Process. Image Commun., 2013, 28, (8), pp. 870883.
    14. 14)
      • 24. Yao, Y., Shen, L., An, P.: ‘Bivariate analysis of 3D structure for stereoscopic image quality assessment’, Signal Process. Image Commun., 2018, 65, pp. 128140.
    15. 15)
      • 32. Bensalma, R., Larabi, M.C.: ‘A perceptual metric for stereoscopic image quality assessment based on the binocular energy’, Multidimens. Syst. Signal Process., 2013, 24, (2), pp. 281316.
    16. 16)
      • 21. Zhang, W., Qu, C., Ma, L., et al: ‘Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network’, Pattern Recognit., 2016, 59, (SI), pp. 176187.
    17. 17)
      • 22. Xu, X., Zhao, Y., Ding, Y.: ‘No-reference stereoscopic image quality assessment based on saliency-guided binocular feature consolation’, Electron. Lett., 2017, 53, (22), pp. 14681470.
    18. 18)
      • 17. Zhou, W., Yu, L.: ‘Perceptual quality measurement of 3D images based on binocular vision’, Appl. Opt., 2015, 54, (21), pp. 65496557.
    19. 19)
      • 5. Appina, B., Khan, S., Channappayya, S.S.: ‘No-reference image quality assessment using natural scene statistics’, Signal Process. Image Commun., 2016, 43, pp. 114.
    20. 20)
      • 27. Kim, D., Sohn, K.: ‘Visual fatigue prediction for stereoscopic images’, IEEE Trans. Circuits. Syst. Video Tech., 2011, 21, (2), pp. 231236.
    21. 21)
      • 23. Choi, J., Kim, D., Choi, S., et al: ‘Visual fatigue modelling and analysis for stereoscopic video’, Opt. Eng., 2012, 51, (1), p. 017206.
    22. 22)
      • 26. Murala, S., Maheshwari, R.P., Balasubramanian, R.: ‘Local tetra pattern: a new feature descriptor for content-based image retrieval’, IEEE Trans. Image Process., 2012, 21, (5), pp. 28742886.
    23. 23)
      • 16. Orban, G.A.: ‘Higher order visual processing in macaque extrastriate cortex’, Phys. Rev., 2008, 88, (1), pp. 5989.
    24. 24)
      • 10. Shao, F., Li, K., Lin, W., et al: ‘Full-reference quality assessment of stereoscopic images by learning binocular receptive fields properties’, IEEE Trans. Image Process., 2015, 24, (10), pp. 29712983.
    25. 25)
      • 12. Krüger, N., Janssen, P., Kalkan, S., et al: ‘Deep hierarchies in the primate visual cortex: what can we learn for computer vision?’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (8), pp. 18471871.
    26. 26)
      • 1. Shen, L., Li, K., Feng, G., et al: ‘Efficient intra mode selection for depth-map coding utilizing spatiotemporal, inter-view correlations in 3D-HEVC’, IEEE Trans. Image Process., 2018, 27, (9), pp. 41954206.
    27. 27)
      • 15. Marc, R.E., Jones, B.W., Watt, C.B., et al: ‘Neural remodelling in retina degeneration’, Prog. Retin. Eye Res., 2003, 22, (5), pp. 607655.
    28. 28)
      • 8. Chen, M.J., Su, C.C., Kwon, D.K., et al: ‘Full-reference quality assessment of stereopairs accounting for rivalry’, Signal Process. Image Commun., 2013, 28, (9), pp. 11431155.
    29. 29)
      • 19. Fang, F., Boyaci, H., Kersten, D.: ‘Border ownership selectivity in human early visual cortex and its modulation by attention’, J. Neurosci., 2009, 29, (2), pp. 460465.
    30. 30)
      • 29. Hou, X., Harel, J., Koch, C.: ‘Image signature: highlighting sparse salient regions’, IEEE Trans. Pattern Anal. Mach. Intel., 2012, 34, (1), pp. 194201.
    31. 31)
      • 13. Ding, Y., Zhao, Y.: ‘No-reference quality assessment for stereoscopic images considering visual discomfort and binocular rivalry’, Electron. Lett., 2017, 53, (25), pp. 16461647.
    32. 32)
      • 6. Shao, F., Lin, W., Wang, S., et al: ‘Learning receptive fields and quality lookups for blind quality assessment of stereoscopic images’, IEEE Trans. Cybern., 2016, 46, (3), pp. 730743.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5605
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5605
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address