access icon free Automatic geometry calibration for multi-projector display systems with arbitrary continuous curved surfaces

A large-scale multi-projector display system offers high-resolution, high-brightness and immersive visualisation for realistic experience to end users. It has been demonstrated to be effective tackling the conflict between the increasing demands of super-resolution display and the resolution limitation of a single display system. However, there is still no standardisation method for curved-surface projection screen. In this study, we propose a novel approach for calibrating multi-projector display systems, which have curved surfaces. First, based on a detailed analysis on arbitrarily curved surfaces, we present a three-dimensional reconstruction algorithm based on Bezier surface models. Then, for fully utilising the projection area of each projector, we propose a novel curved-surface stitching algorithm to achieve geometry seamlessness of multi-projector display systems. Experimental results show that by constructing local Bessel models for the curved screen, the proposed method performs better than traditional approaches, i.e. the new method achieves geometric calibration with higher accuracy. The proposed method of modelling projection screen and the corresponding automatic geometric correction scheme effectively increase the utilisation ratio of the original projection area of each projector and improve the calibration accuracy of multi-projector system with continuous curved surface.

Inspec keywords: optical projectors; geometry; image reconstruction; calibration; computational geometry; computer displays; image resolution; data visualisation

Other keywords: large-scale multiprojector display system; high-resolution; arbitrary continuous curved surfaces; resolution limitation; super-resolution display; Bezier surface models; multiprojector system; continuous curved surface; single display system; arbitrarily curved surfaces; curved-surface projection screen; curved screen; calibrating multiprojector display systems; curved-surface stitching algorithm; automatic geometry calibration

Subjects: Computer displays; Combinatorial mathematics; Graphics techniques; Combinatorial mathematics; Display technology; Measurement standards and calibration

References

    1. 1)
      • 18. Chen, M., Fan, B., Song, H.: ‘Geometry calibration for multi-projector display automatically based on the feedback of camera algorithm’. 11th Int. Conf. Fuzzy Systems and Knowledge Discovery, Chongqing, China, August 2014, pp. 570574.
    2. 2)
      • 19. Babar, K., Hafiz, R., Khurshid, K., et al: ‘A scalable architecture for geometric correction of multi-projector display systems’, Displays, 2015, 40, (1), pp. 104112.
    3. 3)
      • 13. Sajadi, B., Majumder, A.: ‘Auto-calibration of cylindrical multi-projector systems’. Proc. IEEE Virtual Reality Conf. 2010, Washington, D.C., USA, June 2010, pp. 155162.
    4. 4)
      • 26. Wang, X., Yan, K.: ‘Immersive human computer interactive virtual environment using large-scale display system’, Future Gener. Comput. Syst., 2017, doi: 10.1016/j.future.2017.07.058, 96, pp. 649659.
    5. 5)
      • 20. Li, D., Xie, J., Zhao, L., et al: ‘Multi-projector auto-calibration and placement optimization for non-planar surfaces’, Opt. Rev., 2015, 22, (1), pp. 762778.
    6. 6)
      • 10. Majumder, A., Sajadi, B.: ‘Large area displays: the changing face of visualization’, IEEE Comput., 2013, 46, (5), pp. 2633.
    7. 7)
      • 11. Harville, M., Culbertson, B., Sobel, I., et al: ‘Practical methods for geometric and photometric correction of tiled projector displays on curved surfaces’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops 2006, Washington, D.C., USA, May 2006, pp. 5158.
    8. 8)
      • 17. Gaur, P.K., Sarode, D.M., Shete, P.P., et al: ‘Achieving seamlessness in multi-projector based tiled display using camera feedback’. Int. Conf. Contemporary Computing and Informatics, Mysuru, India, November 2014, pp. 293298.
    9. 9)
      • 7. Zhong, Q., Peng, Y., Li, H., et al: ‘Optimized image synthesis for multi-projector-type light field display’, J. Disp. Technol., 2016, 12, (12), pp. 17451751.
    10. 10)
      • 9. Wang, X., Yan, K.: ‘Automatic colour correction for multi-projector display systems’, Multimed. Tools Appl., 2017, 1, (9), pp. 118.
    11. 11)
      • 1. Brown, M., Majumder, A., Yang, R.G.: ‘Camera-based calibration techniques for seamless multi-projector displays’, IEEE Trans. Vis. Comput. Graph., 2005, 11, (2), pp. 193206.
    12. 12)
      • 14. Jun, Z., Bangping, W., Xiaofeng, L.: ‘Method of image alignment for calibration of multi-projector displays’, J. Image Graph., 2011, 16, (2), pp. 293299.
    13. 13)
      • 24. Willi, S., Grundhöfer, A.: ‘Robust geometric self-calibration of generic multi-projector camera systems’. 2017 IEEE Int. Symp. Mixed and Augmented Reality, Nara, Japan, November 2017, pp. 4251.
    14. 14)
      • 21. Zhou, Q., Miller, G., Wu, K., et al: ‘Automatic calibration of a multiple-projector spherical fish tank VR display’. 2017 IEEE Winter Conf. Applications of Computer Vision (WACV), Santa Rosa, March 2017, pp. 10721081.
    15. 15)
      • 16. Majumder, A., Lai, D.-Q., Tehrani, M.A.: ‘A multi-projector display system of arbitrary shape, size and resolution’. IEEE Virtual Reality, Arles, France, March 2015, pp. 339340.
    16. 16)
      • 15. Park, S., Seo, H., Cha, S., et al: ‘Auto-calibration of multi-projector displays with a single handheld camera’. IEEE Scientific Visualization Conf., IL, USA, October 2015, pp. 6572.
    17. 17)
      • 3. Wang, X., Yan, K.: ‘Automatic color correction for multi-projector display systems’, Multimedia Tools Appl., 2017, 77, (11), pp. 1311513132.
    18. 18)
      • 12. Sajadi, B., Majumder, A.: ‘Auto-calibrating tiled projectors on piecewise smooth vertically extruded surfaces’, IEEE Trans. Vis. Comput. Graph., 2011, 17, (9), pp. 12091223.
    19. 19)
      • 8. Siegl, C., Colaianni, M., Stamminger, M., et al: ‘Adaptive stray-light compensation in dynamic multi-projection mapping’, Comput. Vis. Media, 2017, 3, (3), pp. 263271.
    20. 20)
      • 2. Yang, R.G., Gotz, D., Hensley, J., et al: ‘PixelFlex: a reconfigurable multi-projector display system’. Proc. IEEE Visualization 2001, CA, USA, October 2001, pp. 167174.
    21. 21)
      • 23. Nagata, F., Horie, N., Ochi, H., et al: ‘Curved surface fitting method using a raster-scanning window and its application to stereolithography-base reverse engineering’. IEEE Industrial Electronics Society, Scotland, UK, June 2017, pp. 62586264.
    22. 22)
      • 6. Lai, D.-Q., Sajadi, B., Jiang, S., et al: ‘A distributed memory hierarchy and data management for interactive scene navigation and modification on tiled display walls’, IEEE Trans. Vis. Comput. Graph., 2015, 21, (6), pp. 714729.
    23. 23)
      • 5. Xiuhui, W., Haiboz, Y., Hai, L.: ‘Geometry calibration for multi-projector tiled display wall’, J. Comput. Aided Des. Comput. Graph., 2008, 20, (6), pp. 707712.
    24. 24)
      • 22. Tehrani, M.A., Gopi, M., Majumder, A.: ‘Auto-calibration of multi-projector systems on arbitrary shapes’. Applied Imagery Pattern Recognition Workshop, Washington, D.C., USA, October 2016, pp. 13.
    25. 25)
      • 4. Chen, H., Sukthankar, R., Wallace, G., et al: ‘Scalable alignment of large-format multi-projector displays using camera homography trees’. Proc. IEEE Visualization 2002, Washington, D.C., USA, October 2002, pp. 339346.
    26. 26)
      • 25. Junyong, D., Shimin, H., Dengwen, Z.: ‘Offset approximation of loop subdivision surfaces’, Chin. J. Comput., 2003, 26, (7), pp. 789795.
    27. 27)
      • 27. Ha, H., Perdoch, M., Alismail, H.: ‘Deltille grids for geometric camera calibration’. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, October 2017, pp. 613.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5575
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5575
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading