Automatic geometry calibration for multi-projector display systems with arbitrary continuous curved surfaces

Automatic geometry calibration for multi-projector display systems with arbitrary continuous curved surfaces

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A large-scale multi-projector display system offers high-resolution, high-brightness and immersive visualisation for realistic experience to end users. It has been demonstrated to be effective tackling the conflict between the increasing demands of super-resolution display and the resolution limitation of a single display system. However, there is still no standardisation method for curved-surface projection screen. In this study, we propose a novel approach for calibrating multi-projector display systems, which have curved surfaces. First, based on a detailed analysis on arbitrarily curved surfaces, we present a three-dimensional reconstruction algorithm based on Bezier surface models. Then, for fully utilising the projection area of each projector, we propose a novel curved-surface stitching algorithm to achieve geometry seamlessness of multi-projector display systems. Experimental results show that by constructing local Bessel models for the curved screen, the proposed method performs better than traditional approaches, i.e. the new method achieves geometric calibration with higher accuracy. The proposed method of modelling projection screen and the corresponding automatic geometric correction scheme effectively increase the utilisation ratio of the original projection area of each projector and improve the calibration accuracy of multi-projector system with continuous curved surface.


    1. 1)
      • 1. Brown, M., Majumder, A., Yang, R.G.: ‘Camera-based calibration techniques for seamless multi-projector displays’, IEEE Trans. Vis. Comput. Graph., 2005, 11, (2), pp. 193206.
    2. 2)
      • 2. Yang, R.G., Gotz, D., Hensley, J., et al: ‘PixelFlex: a reconfigurable multi-projector display system’. Proc. IEEE Visualization 2001, CA, USA, October 2001, pp. 167174.
    3. 3)
      • 3. Wang, X., Yan, K.: ‘Automatic color correction for multi-projector display systems’, Multimedia Tools Appl., 2017, 77, (11), pp. 1311513132.
    4. 4)
      • 4. Chen, H., Sukthankar, R., Wallace, G., et al: ‘Scalable alignment of large-format multi-projector displays using camera homography trees’. Proc. IEEE Visualization 2002, Washington, D.C., USA, October 2002, pp. 339346.
    5. 5)
      • 5. Xiuhui, W., Haiboz, Y., Hai, L.: ‘Geometry calibration for multi-projector tiled display wall’, J. Comput. Aided Des. Comput. Graph., 2008, 20, (6), pp. 707712.
    6. 6)
      • 6. Lai, D.-Q., Sajadi, B., Jiang, S., et al: ‘A distributed memory hierarchy and data management for interactive scene navigation and modification on tiled display walls’, IEEE Trans. Vis. Comput. Graph., 2015, 21, (6), pp. 714729.
    7. 7)
      • 7. Zhong, Q., Peng, Y., Li, H., et al: ‘Optimized image synthesis for multi-projector-type light field display’, J. Disp. Technol., 2016, 12, (12), pp. 17451751.
    8. 8)
      • 8. Siegl, C., Colaianni, M., Stamminger, M., et al: ‘Adaptive stray-light compensation in dynamic multi-projection mapping’, Comput. Vis. Media, 2017, 3, (3), pp. 263271.
    9. 9)
      • 9. Wang, X., Yan, K.: ‘Automatic colour correction for multi-projector display systems’, Multimed. Tools Appl., 2017, 1, (9), pp. 118.
    10. 10)
      • 10. Majumder, A., Sajadi, B.: ‘Large area displays: the changing face of visualization’, IEEE Comput., 2013, 46, (5), pp. 2633.
    11. 11)
      • 11. Harville, M., Culbertson, B., Sobel, I., et al: ‘Practical methods for geometric and photometric correction of tiled projector displays on curved surfaces’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops 2006, Washington, D.C., USA, May 2006, pp. 5158.
    12. 12)
      • 12. Sajadi, B., Majumder, A.: ‘Auto-calibrating tiled projectors on piecewise smooth vertically extruded surfaces’, IEEE Trans. Vis. Comput. Graph., 2011, 17, (9), pp. 12091223.
    13. 13)
      • 13. Sajadi, B., Majumder, A.: ‘Auto-calibration of cylindrical multi-projector systems’. Proc. IEEE Virtual Reality Conf. 2010, Washington, D.C., USA, June 2010, pp. 155162.
    14. 14)
      • 14. Jun, Z., Bangping, W., Xiaofeng, L.: ‘Method of image alignment for calibration of multi-projector displays’, J. Image Graph., 2011, 16, (2), pp. 293299.
    15. 15)
      • 15. Park, S., Seo, H., Cha, S., et al: ‘Auto-calibration of multi-projector displays with a single handheld camera’. IEEE Scientific Visualization Conf., IL, USA, October 2015, pp. 6572.
    16. 16)
      • 16. Majumder, A., Lai, D.-Q., Tehrani, M.A.: ‘A multi-projector display system of arbitrary shape, size and resolution’. IEEE Virtual Reality, Arles, France, March 2015, pp. 339340.
    17. 17)
      • 17. Gaur, P.K., Sarode, D.M., Shete, P.P., et al: ‘Achieving seamlessness in multi-projector based tiled display using camera feedback’. Int. Conf. Contemporary Computing and Informatics, Mysuru, India, November 2014, pp. 293298.
    18. 18)
      • 18. Chen, M., Fan, B., Song, H.: ‘Geometry calibration for multi-projector display automatically based on the feedback of camera algorithm’. 11th Int. Conf. Fuzzy Systems and Knowledge Discovery, Chongqing, China, August 2014, pp. 570574.
    19. 19)
      • 19. Babar, K., Hafiz, R., Khurshid, K., et al: ‘A scalable architecture for geometric correction of multi-projector display systems’, Displays, 2015, 40, (1), pp. 104112.
    20. 20)
      • 20. Li, D., Xie, J., Zhao, L., et al: ‘Multi-projector auto-calibration and placement optimization for non-planar surfaces’, Opt. Rev., 2015, 22, (1), pp. 762778.
    21. 21)
      • 21. Zhou, Q., Miller, G., Wu, K., et al: ‘Automatic calibration of a multiple-projector spherical fish tank VR display’. 2017 IEEE Winter Conf. Applications of Computer Vision (WACV), Santa Rosa, March 2017, pp. 10721081.
    22. 22)
      • 22. Tehrani, M.A., Gopi, M., Majumder, A.: ‘Auto-calibration of multi-projector systems on arbitrary shapes’. Applied Imagery Pattern Recognition Workshop, Washington, D.C., USA, October 2016, pp. 13.
    23. 23)
      • 23. Nagata, F., Horie, N., Ochi, H., et al: ‘Curved surface fitting method using a raster-scanning window and its application to stereolithography-base reverse engineering’. IEEE Industrial Electronics Society, Scotland, UK, June 2017, pp. 62586264.
    24. 24)
      • 24. Willi, S., Grundhöfer, A.: ‘Robust geometric self-calibration of generic multi-projector camera systems’. 2017 IEEE Int. Symp. Mixed and Augmented Reality, Nara, Japan, November 2017, pp. 4251.
    25. 25)
      • 25. Junyong, D., Shimin, H., Dengwen, Z.: ‘Offset approximation of loop subdivision surfaces’, Chin. J. Comput., 2003, 26, (7), pp. 789795.
    26. 26)
      • 26. Wang, X., Yan, K.: ‘Immersive human computer interactive virtual environment using large-scale display system’, Future Gener. Comput. Syst., 2017, doi: 10.1016/j.future.2017.07.058, 96, pp. 649659.
    27. 27)
      • 27. Ha, H., Perdoch, M., Alismail, H.: ‘Deltille grids for geometric camera calibration’. 2017 IEEE Int. Conf. Computer Vision (ICCV), Venice, Italy, October 2017, pp. 613.

Related content

This is a required field
Please enter a valid email address