http://iet.metastore.ingenta.com
1887

Exact Legendre–Fourier moments in improved polar pixels configuration for image analysis

Exact Legendre–Fourier moments in improved polar pixels configuration for image analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the exact Legendre–Fourier moments and a novel arrangement of polar pixels that allows calculating orthogonal moments defined in a unit radius more accurately than traditional methods. This arrangement simplifies implementation and preserves the values of the pixels of the image during the calculation of the moments. Moreover, the exact Legendre–Fourier moments use the weighted substituted radial shifted Legendre polynomials as kernel, which has the ability to accurately calculate the circular moments. Finally, the author presents a comparative analysis of the reconstruction error with existing configurations and other families of circular moments. The results indicate that the mehod provides a significant advantage.

References

    1. 1)
      • 1. Papakostas, G.A.: ‘Over 50 years of image moments and moment invariants’, in Papakostas, G.A. (Ed.): ‘Moments moment invariants-theor app’ (Science Gate Publishing, Xanthi, Greece, 2014), pp. 332.
    2. 2)
      • 2. Teague, M.R.: ‘Image analysis via the general theory of moments’, JOSA, 1980, 70, (8), pp. 920930.
    3. 3)
      • 3. Liao, S.X., Pawlak, M.: ‘On the accuracy of Zernike moments for image analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (12), pp. 13581364.
    4. 4)
      • 4. Xin, Y., Pawlak, M., Liao, S.: ‘Accurate computation of Zernike moments in polar coordinates’, IEEE Trans. Image Process., 2007, 16, (2), pp. 581587.
    5. 5)
      • 5. Keys, R.: ‘Cubic convolution interpolation for digital image processing’, IEEE Trans. Acoust. Speech Signal Process., 1981, 29, (6), pp. 11531160.
    6. 6)
      • 6. Singh, C., Walia, E.: ‘Computation of Zernike moments in improved polar configuration’, IET Image Process., 2009, 3, (4), pp. 217227.
    7. 7)
      • 7. Liu, C., Huang, X.-H., Wang, M.: ‘Fast computation of Zernike moments in polar coordinates’, IET Image Process., 2012, 6, (7), pp. 9961004.
    8. 8)
      • 8. Camacho-Bello, C., Toxqui-Quitl, C., Padilla-Vivanco, A., et al: ‘High-precision and fast computation of Jacobi–Fourier moments for image description’, JOSA A, 2014, 31, (1), pp. 124134.
    9. 9)
      • 9. Sáez-Landete, J.: ‘Comments on fast computation of Jacobi-Fourier moments for invariant image recognition’, Pattern Recognit., 2017, 67, pp. 1622.
    10. 10)
      • 10. Upneja, R., Singh, C.: ‘Fast computation of Jacobi-Fourier moments for invariant image recognition’, Pattern Recognit., 2015, 48, (5), pp. 18361843.
    11. 11)
      • 11. Hosny, K.M., Darwish, M.M.: ‘New set of quaternion moments for color images representation and recognition’, J. Math. Imaging Vis., 2018, 60, (5), pp. 717736.
    12. 12)
      • 12. Hosny, K.M., Darwish, M.M.: ‘Highly accurate and numerically stable higher order QPCET moments for color image representation’, Pattern Recognit. Lett., 2017, 97, pp. 2936.
    13. 13)
      • 13. Ma, Z.M., Zhang, G., Yan, L.: ‘Shape feature descriptor using modified Zernike moments’, Pattern Anal. Appl., 2011, 14, (1), pp. 922.
    14. 14)
      • 14. Liu, Z., Wang, H.: ‘A novel speech content authentication algorithm based on Bessel–Fourier moments’, Digit. Signal Process., 2014, 24, pp. 197208.
    15. 15)
      • 15. Camacho-Bello, C., Padilla-Vivanco, A., Toxqui-Quitl, C., et al: ‘Reconstruction of color biomedical images by means of quaternion generic Jacobi–Fourier moments in the framework of polar pixels’, J.Med. Imag., 2016, 3, (1), p. 014004.
    16. 16)
      • 16. Hosny, K.M., Darwish, M.M.: ‘Robust color image watermarking using invariant quaternion Legendre–Fourier moments’, Multimedia Tools Appl., 2018, 77, (19), pp. 2472724750.
    17. 17)
      • 17. Lahrache, S., El Ouazzani, R., El Qadi, A.: ‘Rules of photography for image memorability analysis’, IET Image Process., 2018, 12, (7), pp. 12281236.
    18. 18)
      • 18. Wei, D., Li, Y.M.: ‘Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain’, IEEE Trans. Signal Process., 2016, 64, (18), pp. 48614874.
    19. 19)
      • 19. Wei, D.: ‘Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions’, IET Signal Process., 2016, 10, (9), pp. 10521061.
    20. 20)
      • 20. Ji, J.: ‘Robust approach to independent component analysis for SAR image analysis’, IET Image Process., 2012, 6, (3), pp. 284291.
    21. 21)
      • 21. Bolourchi, P., Demirel, H., Uysal, S.: ‘Target recognition in SAR images using radial Chebyshev moments’, Signal. Image. Video. Process., 2017, 11, (6), pp. 10331040.
    22. 22)
      • 22. Camacho-Bello, C., Toxqui-Quitl, C., Padilla-Vivanco, A.: ‘Generic orthogonal moments and applications’, in Papakostas, G.A. (Ed.): ‘Moments moment invariants-theor app’ (Science Gate Publishing, Xanthi, Greece, 2014), pp. 175204.
    23. 23)
      • 23. Xiao, B., Wang, G.-Y., Li, W.-S.: ‘Radial shifted Legendre moments for image analysis and invariant image recognition’, Image Vis. Comput., 2014, 32, (12), pp. 9941006.
    24. 24)
      • 24. Xiao, B., Li, L., Li, Y., et al: ‘Image analysis by fractional-order orthogonal moments’, Inf. Sci., 2017, 382–383, pp. 135149.
    25. 25)
      • 25. Xiao, B., Cui, J.-T., Qin, H.-X., et al: ‘Moments and moment invariants in the radon space’, Pattern Recognit., 2015, 48, (9), pp. 27722784.
    26. 26)
      • 26. Hosny, K.M.: ‘Exact Legendre moment computation for gray level images’, Pattern Recognit., 2007, 40, (12), pp. 35973605.
    27. 27)
      • 27. Papakostas, G.A., Karakasis, E.G., Koulouriotis, D.E.: ‘Accurate and speedy computation of image Legendre moments for computer vision applications’, Image Vis. Comput., 2010, 28, (3), pp. 414423.
    28. 28)
      • 28. Xia, T., Zhu, H., Shu, H., et al: ‘Image description with generalized pseudo-Zernike moments’, JOSA A, 2007, 24, (1), pp. 5059.
    29. 29)
      • 29. Amu, G., Hasi, S., Yang, X., et al: ‘Image analysis by pseudo-Jacobi (p = 4, q = 3)–Fourier moments’, Appl. Opt., 2004, 43, (10), pp. 20932101.
    30. 30)
      • 30. Ping, Z.L., Wu, R.G., Sheng, Y.L.: ‘Image description with Chebyshev–Fourier moments’, JOSA A, 2002, 19, (9), pp. 17481754.
    31. 31)
      • 31. Sheng, Y., Shen, L.: ‘Orthogonal Fourier–Mellin moments for invariant pattern recognition’, JOSA A, 1994, 11, (6), pp. 17481757.
    32. 32)
      • 32. Ren, H., Ping, Z., Bo, W., et al: ‘Multidistortion-invariant image recognition with radial harmonic Fourier moments’, JOSA A, 2003, 20, (4), pp. 631637.
    33. 33)
      • 33. Xiao, B., Ma, J.-F., Wang, X.: ‘Image analysis by Bessel–Fourier moments’, Pattern Recognit., 2010, 43, (8), pp. 26202629.
    34. 34)
      • 34. Mukundan, R.: ‘Radial Tchebichef invariants for pattern recognition’. InProc. TENCON 2005 - IEEE Region 10 Conf., Melbourne, Australia, November 2005, pp. 16.
    35. 35)
      • 35. Camacho-Bello, C., Báez-Rojas, J.J., Toxqui-Quitl, C., et al: ‘Color image reconstruction using quaternion Legendre-Fourier moments in polar pixels’. Proc. 2014 Int. Conf. Mechatronics, Electronics and Automotive Engineering (ICMEAE), Cuernavaca, Mexico, 2014, pp. 38.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5489
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5489
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address