Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fast HSI super resolution using linear regression

Hyperspectral imaging has great achievements in agriculture, astronomy, surveillance, and so on. However, the inherent low spatial resolution of hyperspectral imaging, unfortunately, limits its more widespread applications. Recently, hyperspectral image (HSI) super resolution addresses this problem by fusing a low spatial resolution HSI (LR-HSI) with a high spatial resolution multispectral image (HR-MSI), but most of these methods did not consider real-time restoration of high spatial resolution HSI. In this study, the authors propose a fast HSI super-resolution method which fills this blank. Specifically, they model the hyperspectral super resolution as a linear regression problem according to the fact that the imaging process is a linear transform and the inverse of this transform can be approximately estimated, as the spectra of a typical scene lie in a very low-dimensional space. To further exploit the low-dimensional nature of the spectra, they divide the HR-MSI and LR-HSI into several patches and learn the inverse transform patch-by-patch. Experiments on several public datasets show that their method approximates state-of-the-art methods in accuracy, but is several orders of magnitude faster than all of them. Furthermore, they provide an efficient C language implementation of their methods, which can meet the real-time request.

References

    1. 1)
      • 13. Dong, W., Fu, F., Shi, G., et al: ‘Hyperspectral image super-resolution via non-negative structured sparse representation’, IEEE Trans. Image Process., 2016, 25, (5), pp. 23372352.
    2. 2)
      • 22. Minghelli Roman, A., Mangolini, M., Petit, M., et al: ‘Spatial resolution improvement of MERIS images by fusion with TM images’, IEEE Trans. Geosci. Remote Sens., 2001, 39, (7), pp. 15331536.
    3. 3)
      • 28. Chakrabarti, A., Zickler, T.: ‘Statistics of real-world hyperspectral images’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 2011, pp. 193200.
    4. 4)
      • 9. Akhtar, N., Shafait, F., Mian, A.: ‘Bayesian sparse representation for hyperspectral image super resolution’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 36313640.
    5. 5)
      • 10. Lanaras, C., Baltsavias, E., Schindler, K.: ‘Hyperspectral super-resolution by coupled spectral unmixing’. Proc. Int. Conf. Computer Vision (ICCV), Santiago, Chile, 2015, pp. 35863594.
    6. 6)
      • 21. Minghelli Roman, A., Polidori, L., Mathieu Blanc, S., et al: ‘Spatial resolution improvement by merging MERIS-ETM images for coastal water monitoring’, IEEE Geosci. Remote Sens. Lett., 2006, 3, (2), pp. 227231.
    7. 7)
      • 15. Alparone, L., Wald, L., Chanussot, J., et al: ‘Comparison of pan-sharpening algorithms: outcome of the 2006 grs-s data-fusion contest’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (10), pp. 30123021.
    8. 8)
      • 12. Akhtar, N., Shafait, F., Mian, A.: ‘Hierarchical beta process with Gaussian process prior for hyperspectral image super resolution’. Proc. European Conf. Computer Vision (ECCV), Amsterdam, The Netherlands, 2016, pp. 103120.
    9. 9)
      • 5. Wu, D., Sun, D.W.: ‘Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review – part i: fundamentals’, Innov. Food Sci. Emerg. Technol., 2013, 19, pp. 114.
    10. 10)
      • 23. Zurita Milla, R., Clevers, J.G., Schaepman, M.E.: ‘Unmixing-based landsat tm and meris fr data fusion’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (3), pp. 453457.
    11. 11)
      • 20. Cetin, M., Musaoglu, N.: ‘Merging hyperspectral and panchromatic image data: qualitative and quantitative analysis’, Int. J. Remote Sens., 2009, 30, (7), pp. 17791804.
    12. 12)
      • 26. Keshava, N., Mustard, J.F.: ‘Spectral unmixing’, IEEE Signal Process. Mag., 2002, 19, (1), pp. 4457.
    13. 13)
      • 24. Wycoff, E., Chan, T.H., Jia, K., et al: ‘A non-negative sparse promoting algorithm for high resolution hyperspectral imaging’. 2013 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 2013, pp. 14091413.
    14. 14)
      • 16. Saxena, N., Sharma, K.: ‘A novel pan-sharpening approach using Hilbert vibration decomposition’, IET Image Process., 2017, 11, (12).
    15. 15)
      • 14. Huang, H., Wu, N.: ‘Fast facial image super-resolution via local linear transformations for resource-limited applications’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (10), pp. 13631377.
    16. 16)
      • 17. Shettigara, V.K.: ‘A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set’, Photogramm. Eng. Remote Sens., 1992, 58, (5), pp. 561567.
    17. 17)
      • 7. Kawakami, R., Matsushita, Y., Wright, J., et al: ‘High-resolution hyperspectral imaging via matrix factorization’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 2011, pp. 23292336.
    18. 18)
      • 30. Cao, X., Tong, X., Dai, Q., et al: ‘High resolution multispectral video capture with a hybrid camera system’. Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 2011, pp. 297304.
    19. 19)
      • 19. Ranchin, T., Wald, L.: ‘Fusion of high spatial and spectral resolution images: the arsis concept and its implementation’, Photogramm. Eng. Remote Sens., 2000, 66, (1), pp. 4961.
    20. 20)
      • 18. Tu, T.M., Huang, P.S., Hung, C.L., et al: ‘A fast intensity–hue–saturation fusion technique with spectral adjustment for Ikonos imagery’, IEEE Geosci. Remote Sens. Lett., 2004, 1, (4), pp. 309312.
    21. 21)
      • 29. Arad, B., Ben Shahar, O.: ‘Sparse recovery of hyperspectral signal from natural RGB images’. Proc. European Conf. Computer Vision (ECCV), Amsterdam, The Netherlands, 2016, pp. 1934.
    22. 22)
      • 25. Fang, L., Zhuo, H., Li, S.: ‘Super-resolution of hyperspectral image via superpixel-based sparse representation’, Neurocomputing, 2018, 273, pp. 171177.
    23. 23)
      • 6. Bioucas Dias, J.M., Plaza, A., Camps Valls, G., et al: ‘Hyperspectral remote sensing data analysis and future challenges’, IEEE Geosci. Remote Sens. Mag., 2013, 1, (2), pp. 636.
    24. 24)
      • 8. Akhtar, N., Shafait, F., Mian, A.: ‘Sparse spatio-spectral representation for hyperspectral image super-resolution’. Proc. European Conf. Computer Vision (ECCV), Zürich, Switzerland, 2014, pp. 6378.
    25. 25)
      • 2. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: ‘Segmentation and classification of hyperspectral images using watershed transformation’, Pattern Recognit., 2010, 43, (7), pp. 23672379.
    26. 26)
      • 1. Van Nguyen, H., Banerjee, A., Chellappa, R.: ‘Tracking via object reflectance using a hyperspectral video camera’. 2010 IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 2010, pp. 4451.
    27. 27)
      • 3. Pan, Z., Healey, G., Prasad, M., et al: ‘Face recognition in hyperspectral images’, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 2003, 25, (12), pp. 15521560.
    28. 28)
      • 27. Yasuma, F., Mitsunaga, T., Iso, D., et al: ‘Generalized assorted pixel camera: post-capture control of resolution, dynamic range, and spectrum’, IEEE Trans. Image Process., 2010, 19, (9), pp. 22412253.
    29. 29)
      • 4. Kim, S.J., Deng, F., Brown, M.S.: ‘Visual enhancement of old documents with hyperspectral imaging’, Pattern Recognit., 2011, 44, (7), pp. 14611469.
    30. 30)
      • 11. Kwon, H., Tai, Y.W.: ‘RGB-guided hyperspectral image upsampling’. Proc. Int. Conf. Computer Vision (ICCV), Santiago, Chile, 2015, pp. 307315.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5475
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5475
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address