access icon free Efficient interpolated compressed sensing reconstruction scheme for 3D MRI

3D magnetic resonance imaging (3D MRI) is one of the most preferred medical imaging modalities for the analysis of anatomical structures where acquisition of multiple slices along the slice select gradient direction is very common. In 2D multi-slice acquisition, adjacent slices are highly correlated because of very narrow inter-slice gaps. Application of compressed sensing (CS) in MRI significantly reduces traditional MRI scan time due to random undersampling. The authors first propose a fast interpolation technique to estimate missing samples in the k-space of a highly undersampled slice (H-slice) from k-space (s) of neighbouring lightly undersampled slice/s (L-slice). Subsequently, an efficient multislice CS-MRI reconstruction technique based on weighted wavelet forest sparsity, and joint total variation regularisation norms is applied simultaneously on both interpolated H and non-interpolated L-slices. Simulation results show that the proposed CS reconstruction for 3D MRI is not only computationally faster but significant improvements in terms of visual quality and quantitative performance metrics are also achieved compared to the existing methods.

Inspec keywords: interpolation; medical image processing; biomedical MRI; image reconstruction; gradient methods; wavelet transforms; compressed sensing

Other keywords: joint total variation regularisation norms; weighted wavelet forest sparsity; lightly undersampled slice; 3D MRI; visual quantitative performance metric; slice select gradient direction; highly undersampled slice; anatomical structure analysis; random undersampling; efficient interpolated compressed sensing reconstruction scheme; 2D multislice acquisition; multislice CS-MRI reconstruction technique; missing sample estimation; medical imaging modalities; 3D magnetic resonance imaging; fast interpolation technique; visual quality performance metric; multiple slice acquisition; MRI scan time

Subjects: Computer vision and image processing techniques; Medical magnetic resonance imaging and spectroscopy; Integral transforms in numerical analysis; Biology and medical computing; Biomedical magnetic resonance imaging and spectroscopy; Interpolation and function approximation (numerical analysis); Patient diagnostic methods and instrumentation; Interpolation and function approximation (numerical analysis); Numerical approximation and analysis; Integral transforms in numerical analysis; Optical, image and video signal processing

References

    1. 1)
      • 24. Zhang, L., Zhang, D., Mou, X., et al: ‘FSIM: a feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
    2. 2)
      • 23. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted L1 minimization’, J. Fourier Anal. Appl., 2008, 14, (5), pp. 877905.
    3. 3)
      • 22. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice-Hall, Upper Saddle River, NJ, USA, 2013, 3rd edn.).
    4. 4)
      • 8. Pang, Y., Jiang, J., Zhang, X.: ‘Ultrafast fetal MR imaging using interpolated compressed sensing’. Proc. Joint Annual Meeting ISMRM-ESMRMB 2014, Milano, Italy, 2014, p. 2224.
    5. 5)
      • 20. Han, Y., Du, H., Gao, X., et al: ‘MR image reconstruction using cosupport constraints and group sparsity regularisation’, IET Image Process., 2017, 11, (3), pp. 155163.
    6. 6)
      • 11. Plenge, E., Poot, D.J., Niessen, W., et al: ‘Super-resolution reconstruction using cross-scale self-similarity in multi-slice MRI’, in Mori, K., Sakuma, I., Sato, Y., et al (Ed.): ‘Medical image computing and computer-assisted intervention MICCAI 2013, vol. 8151 of lecture notes in computer Science’ (Springer, Berlin Heidelberg, 2013), pp. 123130.
    7. 7)
      • 14. Chen, C., Huang, J.: ‘Exploiting the wavelet structure in compressed sensing MRI’, Magn. Reson. Imaging, 2014, 32, pp. 13771389.
    8. 8)
      • 16. Chen, C., Li, Y., Huang, J.: ‘Forest sparsity for multi channel compressive sensing’, IEEE Trans. Signal Process., 2014, 62, (11), pp. 28032813.
    9. 9)
      • 27. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 183202.
    10. 10)
      • 19. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343.
    11. 11)
      • 15. Chen, C., Huang, J.: ‘The benefit of tree sparsity in accelerated MRI’, Med. Image Anal., 2014, 18, (6), pp. 834842.
    12. 12)
      • 3. Candes, E.J., Romberg, J.K., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    13. 13)
      • 5. Lustig, M., Keutzer, K., Vasanawala, S.: ‘Introduction to parallelizing compressed sensing magnetic resonance imaging’, in Patterson, D., Gannon, D., Wrinn, M. (Ed.): ‘The Berkeley Par Lab: progress in the parallel computing landscape’ (Microsoft Corporation Press, Redmond, 2013), pp. 105139.
    14. 14)
      • 2. Lustig, M., Donoho, D.L., Santos, J.M., et al: ‘Compressed sensing MRI’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 7282.
    15. 15)
      • 18. Gao, X., Du, H., Jia, R., et al: ‘A magnetic resonance image reconstruction method using support of first-second order variation’, Int. J. Imaging Syst. Technol., 2015, 25, (4), pp. 277284.
    16. 16)
      • 21. Huang, J., Chen, C., Axel, L.: ‘Fast multi contrast MRI reconstruction’, Magn. Reson. Imaging, 2014, 32, (10), pp. 13441352.
    17. 17)
      • 7. Pang, Y., Zhang, X.: ‘Interpolated compressed sensing for 2D multiple slice fast MR imaging’, PLoS ONE, 2013, 8, (2), pp. 15.
    18. 18)
      • 13. Huang, J., Zhang, S., Metaxas, D.N.: ‘Efficient MR image reconstruction for compressed MR imaging’, Med. Image Anal., 2011, 15, (5), pp. 670679.
    19. 19)
      • 9. Pang, Y., Yu, B., Zhang, X.: ‘Enhancement of the low resolution image quality using randomly sampled data for multi-slice MR imaging’, Quant. Imaging. Med. Surg., 2014, 4, (2), pp. 136144.
    20. 20)
      • 10. Hirabayashi, A., Inamuro, N., Mimura, K., et al: ‘Compressed sensing MRI using sparsity induced from adjacent slice similarity’. Proc. Int. Conf. Sampling Theory and Applications (SampTA), Washington, DC, USA, 2015, pp. 287291.
    21. 21)
      • 17. Datta, S., Deka, B.: ‘Magnetic resonance image reconstruction using fast interpolated compressed sensing’, J. Opt., 2017, 47, pp. 154165, doi: 10.1007/s12596-017-0428-8.
    22. 22)
      • 6. Pang, Y., Zhang, X.: ‘Interpolated compressed sensing MR image reconstruction using neighboring slice k-space data’. Proc. 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012, p. 2275.
    23. 23)
      • 28. Combettes, P.L., Pesquet, J.C.: ‘Proximal splitting methods in signal processing’, in Bauschke, H., Burachik, R., Combettes, P., et al (Ed.): ‘Fixed-point algorithms for inverse problems in science and engineering’ (Springer, New York, 2011), pp. 185212.
    24. 24)
      • 12. Islam, R., Lambert, A.J., Pickering, M.R., et al: ‘A waveletbased super-resolution method for multi-slice MRI’, J. Biomed. Sci. Eng., 2012, 5, pp. 862870.
    25. 25)
      • 1. Lustig, M., Donoho, D., Pauly, J.M.: ‘Sparse MRI: the application of compressed sensing for rapid MR imaging’, Magn. Reson. Med., 2007, 58, pp. 11821195.
    26. 26)
      • 26. Wang, Z., Bovik, A.C.: ‘A universal image quality index’, IEEE Signal Process. Lett., 2002, 9, (3), pp. 8184.
    27. 27)
      • 4. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    28. 28)
      • 25. Aja-Fernandez, S., San Jose Estepar, R., Alberola Lopez, C., et al: ‘Image quality assessment based on local variance’. Proc. 28th Int. Conf. IEEE EMBS, New York City, NY, USA, 2006, pp. 48154818.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5473
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5473
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading