Efficient interpolated compressed sensing reconstruction scheme for 3D MRI

Efficient interpolated compressed sensing reconstruction scheme for 3D MRI

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

3D magnetic resonance imaging (3D MRI) is one of the most preferred medical imaging modalities for the analysis of anatomical structures where acquisition of multiple slices along the slice select gradient direction is very common. In 2D multi-slice acquisition, adjacent slices are highly correlated because of very narrow inter-slice gaps. Application of compressed sensing (CS) in MRI significantly reduces traditional MRI scan time due to random undersampling. The authors first propose a fast interpolation technique to estimate missing samples in the k-space of a highly undersampled slice (H-slice) from k-space (s) of neighbouring lightly undersampled slice/s (L-slice). Subsequently, an efficient multislice CS-MRI reconstruction technique based on weighted wavelet forest sparsity, and joint total variation regularisation norms is applied simultaneously on both interpolated H and non-interpolated L-slices. Simulation results show that the proposed CS reconstruction for 3D MRI is not only computationally faster but significant improvements in terms of visual quality and quantitative performance metrics are also achieved compared to the existing methods.


    1. 1)
      • 1. Lustig, M., Donoho, D., Pauly, J.M.: ‘Sparse MRI: the application of compressed sensing for rapid MR imaging’, Magn. Reson. Med., 2007, 58, pp. 11821195.
    2. 2)
      • 2. Lustig, M., Donoho, D.L., Santos, J.M., et al: ‘Compressed sensing MRI’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 7282.
    3. 3)
      • 3. Candes, E.J., Romberg, J.K., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, (2), pp. 489509.
    4. 4)
      • 4. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    5. 5)
      • 5. Lustig, M., Keutzer, K., Vasanawala, S.: ‘Introduction to parallelizing compressed sensing magnetic resonance imaging’, in Patterson, D., Gannon, D., Wrinn, M. (Ed.): ‘The Berkeley Par Lab: progress in the parallel computing landscape’ (Microsoft Corporation Press, Redmond, 2013), pp. 105139.
    6. 6)
      • 6. Pang, Y., Zhang, X.: ‘Interpolated compressed sensing MR image reconstruction using neighboring slice k-space data’. Proc. 20th Annual Meeting of ISMRM, Melbourne, Australia, 2012, p. 2275.
    7. 7)
      • 7. Pang, Y., Zhang, X.: ‘Interpolated compressed sensing for 2D multiple slice fast MR imaging’, PLoS ONE, 2013, 8, (2), pp. 15.
    8. 8)
      • 8. Pang, Y., Jiang, J., Zhang, X.: ‘Ultrafast fetal MR imaging using interpolated compressed sensing’. Proc. Joint Annual Meeting ISMRM-ESMRMB 2014, Milano, Italy, 2014, p. 2224.
    9. 9)
      • 9. Pang, Y., Yu, B., Zhang, X.: ‘Enhancement of the low resolution image quality using randomly sampled data for multi-slice MR imaging’, Quant. Imaging. Med. Surg., 2014, 4, (2), pp. 136144.
    10. 10)
      • 10. Hirabayashi, A., Inamuro, N., Mimura, K., et al: ‘Compressed sensing MRI using sparsity induced from adjacent slice similarity’. Proc. Int. Conf. Sampling Theory and Applications (SampTA), Washington, DC, USA, 2015, pp. 287291.
    11. 11)
      • 11. Plenge, E., Poot, D.J., Niessen, W., et al: ‘Super-resolution reconstruction using cross-scale self-similarity in multi-slice MRI’, in Mori, K., Sakuma, I., Sato, Y., et al (Ed.): ‘Medical image computing and computer-assisted intervention MICCAI 2013, vol. 8151 of lecture notes in computer Science’ (Springer, Berlin Heidelberg, 2013), pp. 123130.
    12. 12)
      • 12. Islam, R., Lambert, A.J., Pickering, M.R., et al: ‘A waveletbased super-resolution method for multi-slice MRI’, J. Biomed. Sci. Eng., 2012, 5, pp. 862870.
    13. 13)
      • 13. Huang, J., Zhang, S., Metaxas, D.N.: ‘Efficient MR image reconstruction for compressed MR imaging’, Med. Image Anal., 2011, 15, (5), pp. 670679.
    14. 14)
      • 14. Chen, C., Huang, J.: ‘Exploiting the wavelet structure in compressed sensing MRI’, Magn. Reson. Imaging, 2014, 32, pp. 13771389.
    15. 15)
      • 15. Chen, C., Huang, J.: ‘The benefit of tree sparsity in accelerated MRI’, Med. Image Anal., 2014, 18, (6), pp. 834842.
    16. 16)
      • 16. Chen, C., Li, Y., Huang, J.: ‘Forest sparsity for multi channel compressive sensing’, IEEE Trans. Signal Process., 2014, 62, (11), pp. 28032813.
    17. 17)
      • 17. Datta, S., Deka, B.: ‘Magnetic resonance image reconstruction using fast interpolated compressed sensing’, J. Opt., 2017, 47, pp. 154165, doi: 10.1007/s12596-017-0428-8.
    18. 18)
      • 18. Gao, X., Du, H., Jia, R., et al: ‘A magnetic resonance image reconstruction method using support of first-second order variation’, Int. J. Imaging Syst. Technol., 2015, 25, (4), pp. 277284.
    19. 19)
      • 19. Goldstein, T., Osher, S.: ‘The split Bregman method for L1-regularized problems’, SIAM J. Imaging Sci., 2009, 2, (2), pp. 323343.
    20. 20)
      • 20. Han, Y., Du, H., Gao, X., et al: ‘MR image reconstruction using cosupport constraints and group sparsity regularisation’, IET Image Process., 2017, 11, (3), pp. 155163.
    21. 21)
      • 21. Huang, J., Chen, C., Axel, L.: ‘Fast multi contrast MRI reconstruction’, Magn. Reson. Imaging, 2014, 32, (10), pp. 13441352.
    22. 22)
      • 22. Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice-Hall, Upper Saddle River, NJ, USA, 2013, 3rd edn.).
    23. 23)
      • 23. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted L1 minimization’, J. Fourier Anal. Appl., 2008, 14, (5), pp. 877905.
    24. 24)
      • 24. Zhang, L., Zhang, D., Mou, X., et al: ‘FSIM: a feature similarity index for image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp. 23782386.
    25. 25)
      • 25. Aja-Fernandez, S., San Jose Estepar, R., Alberola Lopez, C., et al: ‘Image quality assessment based on local variance’. Proc. 28th Int. Conf. IEEE EMBS, New York City, NY, USA, 2006, pp. 48154818.
    26. 26)
      • 26. Wang, Z., Bovik, A.C.: ‘A universal image quality index’, IEEE Signal Process. Lett., 2002, 9, (3), pp. 8184.
    27. 27)
      • 27. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imaging Sci., 2009, 2, (1), pp. 183202.
    28. 28)
      • 28. Combettes, P.L., Pesquet, J.C.: ‘Proximal splitting methods in signal processing’, in Bauschke, H., Burachik, R., Combettes, P., et al (Ed.): ‘Fixed-point algorithms for inverse problems in science and engineering’ (Springer, New York, 2011), pp. 185212.

Related content

This is a required field
Please enter a valid email address