Your browser does not support JavaScript!

Bilinear normal mixing model for spectral unmixing

Bilinear normal mixing model for spectral unmixing

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spectral unmixing (SU) is a useful tool for hyperspectral remote sensing image analysis. However, due to the interference of spectral variance and non-linearity caused by photon multiple-scattering, the result might be an inaccuracy. In addition, the unmixing performance of typically relies on the prior knowledge of endmembers. Although many classical endmember extraction algorithms have been presented, it is hard to obtain accurate endmembers in practical applications. This study presents a bilinear normal mixing model named as BNMM to tackle these issues. In fact, BNMM employs the polynomial post-non-linear mixing model to alleviate the effect of non-linearity and uses a normal distribution model to reduce the influence of endmembers variability. Based on the BNMM, the authors develop a Hamiltonian Monte Carlo algorithm for SU. The experimental results demonstrate that the proposed algorithm outperforms other classical unmixing algorithms in the case of simulated and benchmark datasets.

Related content

This is a required field
Please enter a valid email address