http://iet.metastore.ingenta.com
1887

Sparsity measure based library aided unmixing of hyperspectral image

Sparsity measure based library aided unmixing of hyperspectral image

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Image Processing — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Availability of a large number of application-specific spectral libraries has generated a great deal of interest in semi-blind unmixing of the hyperspectral image in both remote sensing and signal processing community. This study presents a novel, semi-supervised, parameter-free algorithm which employs sparsity measures for library pruning. The overall algorithm includes sparsity criteria based library pruning and sparse inversion method for abundance computation. In the pruning process, each library element is removed from the spectral library and the corresponding sparse abundance matrix is computed. The library elements which lead to higher sparsity are adjudged as image endmembers, based on the assumption that elimination of actual image endmember enhances sparsity level. The authors also present a detailed exploration of standard sparsity measures. They calculate the abundance of the pruned library by maximising Gini index or pq-norm sparsity, which satisfies the desirable sparsity properties and is easier to compute. The abundance calculation task is solved using the adaptive direction method of multipliers. The experimental results on several real and synthetic image datasets demonstrate the computational efficiency and proficiency the authors’ method in the presence of noise and highly coherent spectral library.

References

    1. 1)
      • 1. Landgrebe, D.: ‘Hyperspectral image data analysis’, IEEE Signal Process. Mag., 2002, 19, (1), pp. 1728.
    2. 2)
      • 2. Chang, C.-I.: ‘Hyperspectral data processing: algorithm design and analysis’ (John Wiley & Sons, New Jersey, 2013).
    3. 3)
      • 3. Ma, W.-K., Bioucas-Dias, J.M., Chan, T.-H., et al: ‘A signal processing perspective on hyperspectral unmixing: insights from remote sensing’, IEEE Signal Process. Mag., 2014, 31, (1), pp. 6781.
    4. 4)
      • 4. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., et al: ‘Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2012, 5, (2), pp. 354379.
    5. 5)
      • 5. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: ‘Sparse unmixing of hyperspectral data’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (6), pp. 20142039.
    6. 6)
      • 6. Bioucas-Dias, J.M., Figueiredo, M.A.: ‘Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing’. 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 2010, pp. 14.
    7. 7)
      • 7. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: ‘Total variation spatial regularization for sparse hyperspectral unmixing’, IEEE Trans. Geosci. Remote Sens., 2012, 50, (11), pp. 44844502.
    8. 8)
      • 8. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: ‘Collaborative sparse regression for hyperspectral unmixing’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (1), pp. 341354.
    9. 9)
      • 9. Zhang, S., Li, J., Liu, K., et al: ‘Hyperspectral unmixing based on local collaborative sparse regression’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (5), pp. 631635.
    10. 10)
      • 10. Wang, R., Li, H., Liao, W., et al: ‘Centralized collaborative sparse unmixing for hyperspectral images’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2017, 10, (5), pp. 19491962.
    11. 11)
      • 11. Shi, Z., Shi, T., Zhou, M., et al: ‘Collaborative sparse hyperspectral unmixing using l0 norm’, IEEE Trans. Geosci. Remote Sens., 2018, 6, (9), pp. 54955508.
    12. 12)
      • 12. Feng, R., Wang, L., Zhong, Y., et al: ‘Differentiable sparse unmixing based on Bregman divergence for hyperspectral remote sensing imagery’. 2017 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, USA, 2017, pp. 598601.
    13. 13)
      • 13. Zheng, C.Y., Li, H., Wang, Q., et al: ‘Reweighted sparse regression for hyperspectral unmixing’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (1), pp. 479488.
    14. 14)
      • 14. Wang, R., Li, H.-C., Liao, W., et al: ‘Double reweighted sparse regression for hyperspectral unmixing’. Geoscience and Remote Sensing Symp. (IGARSS), 2016 IEEE Int., Beijing, China, 2016, pp. 69866989.
    15. 15)
      • 15. Xu, X., Shi, Z.: ‘Multi-objective based spectral unmixing for hyperspectral images’, ISPRS J. Photogramm. Remote Sens., 2017, 124, pp. 5469.
    16. 16)
      • 16. Zhang, S., Li, J., Wu, Z., et al: ‘Spatial discontinuity-weighted sparse unmixing of hyperspectral images’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (10), pp. 113.
    17. 17)
      • 17. Zhang, S., Li, J., Li, H.-C., et al: ‘Spectral-spatial weighted sparse regression for hyperspectral image unmixing’, IEEE Trans. Geosci. Remote Sens., 2018, 56, (6), pp. 32653276.
    18. 18)
      • 18. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A., et al: ‘Music-csr: hyperspectral unmixing via multiple signal classification and collaborative sparse regression’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (7), pp. 43644382.
    19. 19)
      • 19. Fu, X., Ma, W.-K., Bioucas-Dias, J.M., et al: ‘Semiblind hyperspectral unmixing in the presence of spectral library mismatches’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (9), pp. 51715184.
    20. 20)
      • 20. Cai, T.T., Wang, L.: ‘Orthogonal matching pursuit for sparse signal recovery with noise’, IEEE Trans. Inf. Theory, 2011, 57, (7), pp. 46804688.
    21. 21)
      • 21. Akhtar, N., Shafait, F., Mian, A.: ‘Futuristic greedy approach to sparse unmixing of hyperspectral data’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (4), pp. 21572174.
    22. 22)
      • 22. Shi, Z., Tang, W., Duren, Z., et al: ‘Subspace matching pursuit for sparse unmixing of hyperspectral data’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (6), pp. 32563274.
    23. 23)
      • 23. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    24. 24)
      • 24. Chen, Y., Nasrabadi, N.M., Tran, T.D.: ‘Hyperspectral image classification using dictionary-based sparse representation’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (10), pp. 39733985.
    25. 25)
      • 25. Das, S., Routray, A., Deb, A.: ‘Fast semi-supervised unmixing of hyperspectral image by mutual coherence reduction and recursive PCA’, Remote Sens., 2018, 10, (7), p. 1106.
    26. 26)
      • 26. Das, S., Routray, A., Deb, A.K.: ‘Hyperspectral unmixing by nuclear norm difference maximization based dictionary pruning’, arXiv preprint arXiv:1806.00864, 2018.
    27. 27)
      • 27. Tang, W., Shi, Z., Wu, Y., et al: ‘Sparse unmixing of hyperspectral data using spectral a priori information’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (2), pp. 770783.
    28. 28)
      • 28. Tang, W., Shi, Z., Wu, Y.: ‘Regularized simultaneous forward–backward greedy algorithm for sparse unmixing of hyperspectral data’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (9), pp. 52715288.
    29. 29)
      • 29. Bioucas-Dias, J.M., Nascimento, J.M.: ‘Hyperspectral subspace identification’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (8), pp. 24352445.
    30. 30)
      • 30. Chang, C.-I., Du, Q.: ‘Estimation of number of spectrally distinct signal sources in hyperspectral imagery’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (3), pp. 608619.
    31. 31)
      • 31. Luo, B., Chanussot, J., Douté, S., et al: ‘Empirical automatic estimation of the number of endmembers in hyperspectral images’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (1), pp. 2428.
    32. 32)
      • 32. Das, S., Kundu, J.N., Routray, A.: ‘Estimation of number of endmembers in a hyperspectral image using eigen thresholding’. 2015 Annual IEEE India Conf. (INDICON), New Delhi, India, 2015, pp. 15.
    33. 33)
      • 33. Das, S., Routray, A., Deb, A.K.: ‘Noise robust estimation of number of endmembers in a hyperspectral image by eigenvalue based gap index’. 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, USA, 2016, pp. 15.
    34. 34)
      • 34. Asadi, H., Seyfe, B.: ‘Source number estimation via entropy estimation of eigenvalues (eee) in Gaussian and non-Gaussian noise’, arXiv preprint arXiv:1311.6051, 2013.
    35. 35)
      • 35. Sumarsono, A., Du, Q.: ‘Low-rank subspace representation for estimating the number of signal subspaces in hyperspectral imagery’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (11), pp. 62866292.
    36. 36)
      • 36. Akaike, H.: ‘A new look at the statistical model identification’, IEEE Trans. Autom. Control, 1974, 19, (6), pp. 716723.
    37. 37)
      • 37. Hansen, M.H., Yu, B.: ‘Model selection and the principle of minimum description length’, J. Am. Stat. Assoc., 2001, 96, (454), pp. 746774.
    38. 38)
      • 38. Chang, C.-I., Xiong, W., Chen, H.-M., et al: ‘Maximum orthogonal subspace projection approach to estimating the number of spectral signal sources in hyperspectral imagery’, IEEE. J. Sel. Top. Signal. Process., 2011, 5, (3), pp. 504520.
    39. 39)
      • 39. Chang, C.-I., Xiong, W., Wen, C.-H.: ‘A theory of high-order statistics-based virtual dimensionality for hyperspectral imagery’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (1), pp. 188208.
    40. 40)
      • 40. Rasti, B., Ulfarsson, M.O., Sveinsson, J.R.: ‘Hyperspectral subspace identification using sure’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (12), pp. 24812485.
    41. 41)
      • 41. Ambikapathi, A., Chan, T.-H., Chi, C.-Y.: ‘Convex geometry based estimation of number of endmembers in hyperspectral images’. 2012 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012, pp. 12331236.
    42. 42)
      • 42. Dai, W., Milenkovic, O.: ‘Subspace pursuit for compressive sensing signal reconstruction’, IEEE Trans. Inf. Theory, 2009, 55, (5), pp. 22302249.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5426
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address