access icon free Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm

Retinal vessel segmentation constitutes an essential part of computer-assisted tools for the diagnosis of ocular diseases. In this study, the authors propose an unsupervised retinal blood vessels segmentation approach based on the elite-guided multi-objective artificial bee colony (EMOABC) algorithm. The proposed method exploits several criteria simultaneously to improve the accuracy of the segmentation results. An energy curve function is used to calculate the values of the thresholding criteria, in order to reduce the noise response from lesions and select the optimal thresholds that separate the blood vessels from the background. In order to achieve computational speed up, a stopping criterion method is used to adjust the parameters of the EMOABC algorithm. The proposed method is computationally simple and faster than most of the available unsupervised algorithms, demonstrating fast convergence to the final segmentation. Additionally, the proposed vessel segmentation method outperforms the metaheuristics vessels segmentation algorithms reported in the literature. The achieved mean discrepancy metrics for the proposed approach are 94.5% accuracy, 97.4% specificity and 73.9% sensitivity for DRIVE database, and 94% accuracy, 96.2% specificity and 73.7% sensitivity for STARE database.

Inspec keywords: optimisation; image enhancement; image segmentation; diseases; biomedical optical imaging; eye; ant colony optimisation; blood vessels; medical image processing

Other keywords: retinal blood vessel segmentation; ocular diseases; EMOABC algorithm; elite-guided multiobjective artificial bee colony algorithm; final segmentation; segmentation results; energy curve function; optimal thresholds; essential part; vessel segmentation method; metaheuristics vessels segmentation algorithms; available unsupervised algorithms; computational speed; computer-assisted tools; retinal vessel segmentation; thresholding criteria; unsupervised retinal blood vessels segmentation approach

Subjects: Optimisation techniques; Biomedical measurement and imaging; Patient diagnostic methods and instrumentation; Biology and medical computing; Optical, image and video signal processing; Computer vision and image processing techniques; Optimisation techniques

References

    1. 1)
      • 31. Karaboga, D.: ‘An idea based on honey bee swarm for numerical optimization’. Tech. rep., Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
    2. 2)
      • 17. Budai, A., Bock, R., Maier, A., et al: ‘Robust vessel segmentation in fundus images, international journal of biomedical imaging’. 2013.
    3. 3)
      • 36. Akbari, R., Hedayatzadeh, R., Ziarati, K., et al: ‘A multi-objective artificial bee colony algorithm’, Swarm Evol. Comput., 2012, 2, pp. 3952.
    4. 4)
      • 25. Al-Rawi, M., Karajeh, H.: ‘Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images’, Comput. Methods Programs Biomed., 2007, 87, (3), pp. 248253.
    5. 5)
      • 9. Marin, D., Aquino, A., Gegundez-Arias, M.E., et al: ‘A new supervised method for blood vessel segmentation in retinal images by using gray level and moment invariants-based features’, IEEE Trans. Med. Imaging, 2011, 30, (1), pp. 146158.
    6. 6)
      • 33. Bhandari, A.K., Kumar, A., Singh, G.K.: ‘Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapurs, Otsu and Tsallis functions’, Expert Syst. Appl., 2015, 42, (3), pp. 15731601.
    7. 7)
      • 39. Patra, S., Gautam, R., Singla, A.: ‘A novel context sensitive multilevel thresholding for image segmentation’, Appl. Soft Comput., 2014, 23, pp. 122127.
    8. 8)
      • 20. Hassanien, A.E., Emary, E., Zawbaa, H.M.: ‘Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search’, J. Vis. Commun. Image Represent., 2015, 31, pp. 186196.
    9. 9)
      • 13. Maninis, K.-K., Pont-Tuset, J., Arbelaez, P., et al: ‘Deep retinal image understanding’. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 2016, pp. 140148.
    10. 10)
      • 29. Nakib, A., Oulhadj, H., Siarry, P.: ‘Non-supervised image segmentation based on multiobjective optimization’, Pattern Recognit. Lett., 2008, 29, (2), pp. 161172.
    11. 11)
      • 30. Benaichouche, A.N., Oulhadj, H., Siarry, P.: ‘Multiobjective improved spatial fuzzy c-means clustering for image segmentation combining pareto-optimal clusters’, J. Heuristics, 2016, 22, (4), pp. 383404.
    12. 12)
      • 35. Huo, Y., Zhuang, Y., Gu, J., et al: ‘Elite-guided multi-objective artificial bee colony algorithm’, Appl. Soft Comput., 2015, 32, pp. 199210.
    13. 13)
      • 22. Emary, E., Zawbaa, H.M., Hassanien, A.E., et al: ‘Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search’, Adv. Data Anal. Classif., 2017, 11, (3), pp. 611627.
    14. 14)
      • 28. Kavya, K., Dechamma, M.G., Santhosh Kumar, B.J.: ‘Extraction of retinal blood vessel using artificial bee-colony optimization’, J. Theor.Appl. Inf. Technol., 2016, 88, (3), p. 535.
    15. 15)
      • 41. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: ‘Iterative vessel segmentation of fundus images’, IEEE Trans. Biomed. Eng., 2015, 62, (7), pp. 17381749.
    16. 16)
      • 18. Nguyen, U.T., Bhuiyan, A., Park, L.A., et al: ‘An effective retinal blood vessel segmentation method using multi-scale line detection’, Pattern Recognit., 2013, 46, (3), pp. 703715.
    17. 17)
      • 34. Zou, W., Zhu, Y., Chen, H., et al: ‘Solving multiobjective optimization problems using artificial bee colony algorithm’, Discret. Dyn. Nat. Soc., 2011, 6, (2), pp. 182197.
    18. 18)
      • 4. Heneghan, C., Flynn, J., OKeefe, M., et al: ‘Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis’, Med. Image Anal., 2002, 6, (4), pp. 407429.
    19. 19)
      • 40. Tabb, M., Ahuja, N.: ‘Multiscale image segmentation by integrated edge and region detection’, IEEE Trans. Image Process., 1997, 6, (5), pp. 642655.
    20. 20)
      • 32. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: nsga-ii’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    21. 21)
      • 12. Staal, J., Abramoff, M.D., Niemeijer, M., et al: ‘Ridge-based vessel segmentation in color images of the retina’, IEEE Trans. Med. Imaging, 2004, 23, (4), pp. 501509.
    22. 22)
      • 26. Cinsdikici, M.G., Aydın, D.: ‘Detection of blood vessels in ophthalmoscope images using mf/ant (matched filter/ant colony) algorithm’, Comput. Methods Programs Biomed., 2009, 96, (2), pp. 8595.
    23. 23)
      • 24. Faust, O., Acharya, R., Ng, E., et al: ‘Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review’, J. Med. Syst., 2012, 36, (1), pp. 145157.
    24. 24)
      • 10. Ricci, E., Perfetti, R.: ‘Retinal blood vessel segmentation using line operators and support vector classification’, IEEE Trans. Med. Imaging, 2007, 26, (10), pp. 13571365.
    25. 25)
      • 16. Lam, B.S., Gao, Y., Liew, A.W-C.: ‘General retinal vessel segmentation using regularization-based multiconcavity modeling’, IEEE Trans. Med. Imaging, 2010, 29, (7), pp. 13691381.
    26. 26)
      • 7. Grisan, E., Ruggeri, A.: ‘A divide et impera strategy for automatic classification of retinal vessels into arteries and veins’. Engineering in medicine and Biology Society, 2003. Proc. of the 25th Annual Int. Conf. the IEEE, 2003, vol. 1, pp. 890893.
    27. 27)
      • 1. Foracchia, M., Grisan, E., Ruggeri, A.: ‘Extraction and quantitative description of vessel features in hypertensive retinopathy fundus images’. Book Abstracts 2nd Int. Workshop on Computer Assisted Fundus Image Analysis, 2001, vol. 6.
    28. 28)
      • 27. Asad, A., Azar, A.T., El-Bendary, N., et al: ‘Ant colony based feature selection heuristics for retinal vessel segmentation’, arXiv preprint arXiv:1403.1735.
    29. 29)
      • 38. Otsu, N.: ‘A threshold selection method from gray-level histograms’, Automatica, 1975, 11, (285–296), pp. 2327.
    30. 30)
      • 37. Kapur, J.N., Sahoo, P.K., Wong, A.K.: ‘A new method for gray-level picture thresholding using the entropy of the histogram’, Comput. Vis. Graph. Image Process., 1985, 29, (3), pp. 273285.
    31. 31)
      • 6. Haddouche, A., Adel, M., Rasigni, M., et al: ‘Detection of the foveal avascular zone on retinal angiograms using Markov random fields’, Digit. Signal Process., 2010, 20, (1), pp. 149154.
    32. 32)
      • 19. Chutatape, O., Zheng, L., Krishnan, S.: ‘Retinal blood vessel detection and tracking by matched Gaussian and kalman filters’. Engineering in Medicine and Biology Society, 1998. Proc. of the 20th Annual Int. Conf. the IEEE, 1998, vol. 6, pp. 31443149.
    33. 33)
      • 2. Stern, W.H., Archer, D.: ‘Retinal vascular occlusion’, Annu. Rev. Med., 1981, 32, (1), pp. 101106.
    34. 34)
      • 11. Soares, J.V., Leandro, J.J., Cesar, R.M.Jr, et al: ‘Retinal vessel segmentation using the 2-d Gabor wavelet and supervised classification’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12141222.
    35. 35)
      • 5. Lowell, J., Hunter, A., Steel, D., et al: ‘Measurement of retinal vessel widths from fundus images based on 2-d modeling’, IEEE Trans. Med. Imaging, 2004, 23, (10), pp. 11961204.
    36. 36)
      • 23. Yang, Y., Huang, S., Rao, N.: ‘An automatic hybrid method for retinal blood vessel extraction’, Int. J. Appl. Math. Comput. Sci., 2008, 18, (3), pp. 399407.
    37. 37)
      • 15. Mendonca, A.M., Campilho, A.: ‘Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction’, IEEE Trans. Med. Imaging, 2006, 25, (9), pp. 12001213.
    38. 38)
      • 3. Ciulla, T.A., Amador, A.G., Zinman, B.: ‘Diabetic retinopathy and diabetic macular edema pathophysiology, screening, and novel therapies’, Diabetes Care, 2003, 26, (9), pp. 26532664.
    39. 39)
      • 14. Hoover, A., Kouznetsova, V., Goldbaum, M.: ‘Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response’, IEEE Trans. Med. Imaging, 2000, 19, (3), pp. 203210.
    40. 40)
      • 21. Emary, E., Zawbaa, H.M., Hassanien, A.E., et al: ‘Retinal vessel segmentation based on possibilistic fuzzy c-means clustering optimised with cuckoo search’. 2014 Int. Joint Conf. Neural Networks (IJCNN), 2014, pp. 17921796.
    41. 41)
      • 8. Fraz, M.M., Remagnino, P., Hoppe, A., et al: ‘Blood vessel segmentation methodologies in retinal images – a survey’, Comput. Methods Programs Biomed., 2012, 108, (1), pp. 407433.
    42. 42)
      • 42. Miri, M.S., Mahloojifar, A.: ‘Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction’, IEEE Trans. Biomed. Eng., 2011, 58, (5), pp. 11831192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-ipr.2018.5425
Loading

Related content

content/journals/10.1049/iet-ipr.2018.5425
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading